Home About us Contact | |||
Selected Transcripts (selected + transcript)
Selected AbstractsInsights into human CD34+ hematopoietic stem/progenitor cells through a systematically proteomic survey coupled with transcriptomePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2006Feng Liu Abstract Hematopoietic stem cells are capable of self-renewal and differentiation into different hematopoietic lineages. To gain a comprehensive understanding of hematopoietic stem/progenitor cells, a systematic proteomic survey of human CD34+ cells collected from human umbilical cord blood was performed, in which the proteins were separated by 1- and 2-DE, as well as by nano-LC, and subsequently identified by MS. A total of 370,distinct proteins identified from those cells provided new insights into the potential of the stem/progenitor cells because the nerve, gonad, and eye-associated proteins were reliably identified. Interestingly, the transcripts of 133 (35.9%) identified proteins were not found by the prevalent transcriptome approaches, although several selected transcripts could be detected by RT-PCR. Moreover, the heterogeneity of 33,proteins identified from 2-DE was attributable primarily to post-translational processes rather than to alternative splicing at transcriptional level. Furthermore, the biosyntheses of 15,proteins identified in this study appears not to be completely interrupted in spite of the fact that corresponding antisense RNAs were found in the existing transcriptome data. The integrated proteomic and transcriptomic analyses employed here provided a unique view of the human stem/progenitor cells. [source] Transcriptional Analysis of Buffalo (Bubalus bubalis) Oocytes During In Vitro Maturation Using Bovine cDNA MicroarrayREPRODUCTION IN DOMESTIC ANIMALS, Issue 1 2010OM Kandil Contents The need for improving in vitro production of buffalo embryos necessitates a better understanding of the molecular mechanisms regulating early development including oocyte maturation. Here, we used bovine cDNA microarray platform to investigate mRNA abundance of buffalo oocytes before and after in vitro maturation. For this, a total of six pools each contains 50 immature or in vitro matured buffalo oocytes were used for mRNA isolation and subsequent cDNA synthesis. The BlueChip bovine cDNA microarray (with approximately 2000 clones) was used to analyse gene expression profiles between immature and matured oocytes. Statistical analysis of microarray data revealed a total of 104 transcripts to be differentially expressed between the two oocyte groups. Among these, transcription factors (ZFP91), M-phase mitotic cell cycle (MPHOSPH9), growth factor (BMP15) and DNA binding (HMGN2) were found to be up-regulated in immature oocytes. Similarly, matured oocytes were found to be enriched with genes involved in cytoskeleton (ACTB), hydrogen ion transporting (ATP6V1C2) and structural constituent of ribosome (RPS27A). Quantitative real-time polymerase chain reaction validated the expression profile of some selected transcripts during array analysis. In conclusion, to our knowledge, this is the first large-scale expression study to identify candidate genes differentially abundant and with potential role during buffalo oocyte maturation. [source] Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxinTHE PLANT JOURNAL, Issue 3 2007Simon Björklund Summary Both indole acetic acid (IAA) and gibberellins (GAs) stimulate cell and organ growth. We have examined GA/IAA cross-talk in cambial growth of hybrid aspen (Populus tremula×tremuloides). Decapitated trees were fed with IAA and GA, alone and in combination. Endogenous hormone levels after feeding were measured, by mass spectrometry, in the stem tissues below the point of application. These stem tissues with defined hormone balances were also used for global transcriptome analysis, and the abundance of selected transcripts was measured by real-time reverse-transcription polymerase chain reaction. By feeding isotope-labeled IAA, we demonstrated that GA increases auxin levels in the stem by stimulating polar auxin transport. This finding adds a new dimension to the concept that the endogenous GA/IAA balance in plants is determined by cross-talk between the two hormones. We also show that GA has a common transcriptome with auxin, including many transcripts related to cell growth. This finding provides molecular support to physiological experiments demonstrating that either hormone can induce growth if the other hormone is absent/deficient because of mutations or experimental treatments. It also highlights the potential for extensive cross-talk between GA- and auxin-induced responses in vegetative growth of the intact plant. The role of endogenous IAA and GA in wood development is discussed. [source] Comparative analysis of gene expression profiles between primary knee osteoarthritis and an osteoarthritis endemic to Northwestern China, Kashin-Beck diseaseARTHRITIS & RHEUMATISM, Issue 3 2010Chen Duan Objective To investigate the differences in gene expression profiles of adult articular cartilage from patients with Kashin-Beck disease (KBD) versus those with primary knee osteoarthritis (OA). Methods The messenger RNA expression profiles of articular cartilage from patients with KBD, diagnosed according to the clinical criteria for KBD in China, were compared with those of cartilage from patients with OA, diagnosed according to the Western Ontario and McMaster Universities OA Index. Total RNA was isolated separately from 4 pairs of the KBD and OA cartilage samples, and the expression profiles were evaluated by Agilent 4×44k Whole Human Genome density oligonucleotide microarray analysis. The microarray data for selected transcripts were confirmed by quantitative real-time reverse transcription,polymerase chain reaction (RT-PCR) amplification. Results For 1.2 × 104 transcripts, corresponding to 58.4% of the expressed transcripts, 2-fold changes in differential expression were revealed. Expression levels higher in KBD than in OA samples were observed in a mean ± SD 6,439 ± 1,041 (14.6 ± 2.4%) of the transcripts, and expression levels were lower in KBD than in OA samples in 6,147 ± 1,222 (14.2 ± 2.8%) of the transcripts. After application of the selection criteria, 1.85% of the differentially expressed genes (P < 0.001 between groups) were detected. These included 233 genes, of which 195 (0.4%) were expressed at higher levels and 38 (0.08%) were expressed at lower levels in KBD than in OA cartilage. Comparisons of the quantitative RT-PCR data supported the validity of our microarray data. Conclusion Differences between KBD and OA cartilage exhibited a similar pattern among all 4 of the pairs examined, indicating the presence of disease mechanisms, mainly chondrocyte matrix metabolism, cartilage degeneration, and apoptosis induction pathways, which contribute to cartilage destruction in KBD. [source] Analysis of Gene Expression in Parkinson's Disease: Possible Involvement of Neurotrophic Support and Axon Guidance in Dopaminergic Cell DeathBRAIN PATHOLOGY, Issue 1 2009Koen Bossers Abstract Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. We have studied alterations in gene expression in the substantia nigra, the caudate nucleus and putamen of four PD patients and four matched controls using custom designed Agilent microarrays. To gain insight into changes in gene expression during early stages of dopaminergic neurodegeneration, we selectively investigated the relatively spared parts of the PD substantia nigra, and correlated gene expression changes with alterations in neuronal density. We identified changes in the expression of 287 transcripts in the substantia nigra, 16 transcripts in the caudate nucleus and four transcripts in the putamen. For selected transcripts, transcriptional alterations were confirmed with qPCR on a larger set of seven PD cases and seven matched controls. We detected concerted changes in functionally connected groups of genes. In the PD substantia nigra, we observed strong evidence for a reduction in neurotrophic support and alterations in axon guidance cues. As the changes occur in relatively spared parts of the PD substantia nigra, they suggest novel disease mechanisms involving neurotrophic support and axon guidance in early stages of cellular stress events, ultimately leading to dopaminergic cell death in PD. [source] |