Seepage Meters (seepage + meter)

Distribution by Scientific Domains


Selected Abstracts


Development and Evaluation of an Ultrasonic Ground Water Seepage Meter

GROUND WATER, Issue 6 2001
Ronald J. Paulsen
Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 ,m/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology. [source]


Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA

HYDROLOGICAL PROCESSES, Issue 10 2002
Hans F. Kishel
Abstract Small-scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater-lake interaction within underlying organic-rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10,3 m day,1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater,lake interaction. These results suggest that site-specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge-dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Development and Evaluation of an Ultrasonic Ground Water Seepage Meter

GROUND WATER, Issue 6 2001
Ronald J. Paulsen
Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 ,m/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology. [source]


Evaluation of time-space distributions of submarine ground water discharge

GROUND WATER, Issue 3 2005
Makoto Taniguchi
Submarine ground water discharge (SGD) rates were measured continuously by automated seepage meters to evaluate the process of ground water discharge to the ocean in the coastal zone of Suruga Bay, Japan. The ratio of terrestrial fresh SGD to total SGD was estimated to be at most 9% by continuous measurements of electrical conductivity of SGD. Semidiurnal changes of SGD due to tidal effects and an inverse relation between SGD and barometric pressure were observed. Power spectrum density analyses of SGD, sea level, and ground water level show that SGD near shore correlated to ground water level changes and SGD offshore correlated to sea level changes. SGD rates near the mouth of the Abe River are smaller than those elsewhere, possibly showing the effect of the river on SGD. The ratio of terrestrial ground water discharge to the total discharge to the ocean was estimated to be 14.7% using a water balance method. [source]


Variability and Comparison of Hyporheic Water Temperatures and Seepage Fluxes in a Small Atlantic Salmon Stream,

GROUND WATER, Issue 1 2003
Matthew D. Alexander
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within the streambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 × 10,4 to 2.5 cm3 m,2 sec,1, and mean hyporheic water temperatures, ranging from 10.5° to 18.0°C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were useful for determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 ,S/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone. The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water. [source]