Home About us Contact | |||
Seedling Development (seedling + development)
Selected AbstractsInfluence of Soil Temperature on Seedling Emergence and Early Growth of Peanut Cultivars in Field ConditionsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2006P. V. V. Prasad Abstract Peanut or groundnut (Arachis hypogaea L.) sown in early spring often has poor seed germination and seedling development. The influence of soil temperature on seedling emergence and early growth of six peanut cultivars (Florida MDR98, Southern Runner, Georgia Green, SunOleic 97R, Florunner and C-99R) was studied in natural field soil profiles in temperature-gradient greenhouses. We evaluated the influence of a range of soil temperatures by sowing at eight dates between January 2001 and May 2002 in Gainesville, Florida. On each sowing date, two additional temperature treatments (ambient and ambient +4.5 °C air temperature) were evaluated by sowing on either end of each greenhouse and applying differential heating. In total, 16 different soil temperature treatments were evaluated. Each treatment was replicated four times in four different greenhouses. Mean soil temperature from sowing to final emergence in different treatments ranged from 15 to 32 °C. Sowing date, temperature treatment and cultivar had significant effect on seedling emergence and development (V2 stage). For all cultivars, the lowest germination was observed at the earliest sowing date (coolest soil temperature). Among cultivars, Florida MDR98 was the most sensitive to reduced (cool) temperature with the lowest germination and smallest seedling size at 21 days after sowing, followed by Southern Runner. Georgia Green was the most cold-tolerant with the highest germination, followed by SunOleic 97R. There were no significant differences among cultivars for base temperature, which averaged 11.7 and 9.8 °C for rate of emergence and rate of development to V2 stage respectively. These results imply that cultivar choice and/or genetic improvement of peanut for cold tolerance during emergence and seedling development in regions where cooler soil temperatures persist and/or regions where early sowing is desirable. [source] Varietal Differences in Development of Maize (Zea mays L.) Seedlings on Compacted SoilsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2001L. O. Soyelu Differences among open-pollinated tropical maize (Zea mays L.) varieties in seedling development and establishment on compacted soils were studied. Soil dry density was used as an index of compaction. Three soil compaction levels and 12 traits associated with development and establishment of maize seedlings were investigated. A control (without compaction) was also included. Varietal differences were observed for most traits measured. Genetic differences for seedling development on compacted soil were detected. Varietal differences contributed about three times the contribution of compaction to total variability in the traits. Better seedling development and performance were obtained in moderately compacted soil than in the control. Shoot length, shoot dry weight and per cent dry matter in roots were good indicators of the tolerance of maize seedlings to compaction. A physiological strategy for maize seedling establishment on compacted soil was proposed. The implications of the results for seed testing were also highlighted. It was concluded that consideration should be given to the genotype of maize destined for use in ecologies prone to high soil densities. All varieties of maize grown in an agroecological zone could be screened to identify genotypes tolerant of higher soil densities. The seeds could then be multiplied and distributed to farmers. Sortenunterschiede in der Entwicklung von Mais (Zea mays L.)-Sämlingen in verdichteten Böden Sortenunterschiede der Sämlingsentwicklung und des Aufwuchses wurden in verdichteten Böden bei fremdbestäubenden tropischen Mais (Zea mays L.)-Sorten untersucht. Die Bodentrockendichte wurde als Index für die Verdichtung verwendet. Drei Verdichtungsstärken und zwölf Behandlungen im Zusammenhang mit der Entwicklung und dem Anwuchs von Maissämlingen wurden untersucht. Eine Kontrolle (ohne Bodenverdichtung) wurde berücksichtigt. Sortenunterschiede wurden für die meisten Eigenschaften gemessen. Genetische Differenzen der Sämlingsentwicklung in verdichteten Böden konnten beobachtet werden. Sortendifferenzen trugen etwa dreifach im Vergleich zur Bodenverdichtung im Hinblick auf die Gesamtvariabilität der Eigenschaften bei. Bessere Sämlingentwicklung und Sämlingsleistung wurden an moderat verdichteten Böden im Vergleich zur Kontrolle beobachtet. Die Sprosslänge, das Sprosstrockengewicht und die Trockenmasse prozent in Wurzeln gaben gute Hinweise hinsichtlich der Toleranz der Maissämlinge gegenüber Bodenverdichtung. Eine physiologische Strategie für die Maissämlingsentwicklung in verdichteten Böden wird vorgeschlagen. Die Bedeutung der Ergebnisse für Samentestzwecke wurde betont. Es wird angenommen, dass Genotypen für den Anbau in ökologischen Bedingungen, die starke Bodenverdichtungen aufweisen, berücksichtigt werden sollten. Da viele Maissorten in agroökologischen Gebieten angebaut werden, sollten diese getestet werden, um Genotypen mit Toleranz gegenüber stärkerer Bodenverdichtung zu identifizieren. Diese Samen könnten dann vermehrt und an Landwirt abgegeben werden. [source] AKIN,1 is Involved in the Regulation of Nitrogen Metabolism and Sugar Signaling in ArabidopsisJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2009Xiao-Fang Li Abstract Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been located at the heart of the control of metabolism and development in plants. The active SnRK1 form is usually a heterotrimeric complex. Subcellular localization and specific target of the SnRK1 kinase are regulated by specific beta subunits. In Arabidopsis, there are at least seven genes encoding beta subunits, of which the regulatory functions are not yet clear. Here, we tried to study the function of one beta subunit, AKIN,1. It showed that AKIN,1 expression was dramatically induced by ammonia nitrate but not potassium nitrate, and the investigation of AKIN,1 transgenic Arabidopsis and T-DNA insertion lines showed that AKIN,1 negatively regulated the activity of nitrate ruductase and was positively involved in sugar repression in early seedling development. Meanwhile AKIN,1 expression was reduced upon sugar treatment (including mannitol) and did not affect the activity of sucrose phosphate synthase. The results indicate that AKIN,1 is involved in the regulation of nitrogen metabolism and sugar signaling. [source] Identity and Pathogenicity of Fungi Associated with Root and Crown Rot of Soft Red Winter Wheat Grown on the Upper Coastal Plain Land Resource Area of MississippiJOURNAL OF PHYTOPATHOLOGY, Issue 2 2000M. S. Gonzalez Seedling stand, disease severity and fungal incidence were determined from untreated ,Wakefield' soft red winter wheat planted on a Leeper silty clay loam in field tests conducted at the Mississippi Agricultural and Forestry Experiment Station, Plant Science Research Center, Mississippi State University, Starkville, Mississippi during the 1996,97 and 1997,98 growing seasons. Seedling stand was reduced by 40% each year in plots established with untreated seed. Cochliobolus sativus was the most frequently isolated fungus. Fusarium acuminatum, Fusarium equiseti and Fusarium solani were the most prevalent Fusarium spp. Seven other Fusarium spp. and 23 species of other fungal genera were isolated. Pathogenicity tests with three isolates each of C. sativus, Cochliobolus spicifer, F. acuminatum, F. solani, F. equiseti, Fusarium compactum, Embellisia chlamydospora and Microdochium bolleyi were performed in test tube culture and two isolates each of C. sativus, C. spicifer, F. acuminatum, E. chlamydospora and M. bolleyi under greenhouse conditions. In test tubes and in the greenhouse, seedlings infected with isolates of C. sativus developed seedling blight, discoloration and necrosis, primarily in seminal roots and crowns. In the greenhouse, C. sativus induced lesions on the lower leaf sheath and reduced seedling height, seedling emergence, dry and fresh weight of roots and shoots. Isolates of F. acuminatum, F. solani, F. equiseti, F. compactum, E. chlamydospora and M. bolleyi induced slight to moderate orange to light-brown discoloration of crown and seminal roots in test tubes. Cochliobolus spicifer isolates had the most pre-emergence activity, inducing black root discoloration and root pruning of wheat seedlings and reducing seedling emergence, root fresh weight and shoot dry weight. In the greenhouse, F. acuminatum reduced seedling height, seedling emergence and root and shoot dry weights. Microdochium bolleyi and E. chlamydospora reduced fresh and dry weight of roots, plant emergence and shoot dry weight. Fusarium acuminatum and C. spicifer reduced the growth rate of wheat seedlings. All fungi evaluated showed increased disease severity compared to the untreated control. The high frequency of isolation of C. sativus from crown and root tissues can be partially explained by the dry, warm conditions during the early stages of wheat seedling development in the Upper Coastal Plain Land Resource Area of Mississippi. Zusammenfassung Die Auflaufrate von Sämlingen, die Stärke des Krank-heitsbefalls sowie die Häufigkeit von Pilzarten wurden bei nicht behandelten roten Weichwinterweizen der Sorte Wakefield ermittelt, welche in einem Leeper schlammigen Tonboden an der Mississippi Agricultural & Forestry Experiment Station, Plant Science Research Center, Mississippi State University, Starkville, Mississippi in der 1996,97 und 1997,98 Saison gesät worden waren. In beiden Jahren wurde die Auflaufrate von nicht behandeltem Saatgut um 40% reduziert. Cochliobolus sativus wurde am häufigsten isoliert. Fusarium acuminatum, Fusarium equiseti und Fusarium solani waren die überwiegenden Fusarium spp. Außierdem wurden sieben weitere Fusarium spp. sowie 23 weitere Pilzarten isoliert. Pathogenitätstests mit je 3 Isolaten von C. sativus, Cochliobolus spicifer, F. acuminatum, F. solani, F. equiseti, Fusarium compactum, Embellisia chlamydospora und Microdochiumbolleyi wurden in Reagenzröhrchen durchgeführt, sowie mit je 2 Isolaten von C. sativus, C. spicifer, F. acuminatum, E. chlamydospora und M. bolleyi unter Gewächshausbedingungen. Sowohl in den Reagenzröhrchen als auch im Gewächshaus entwickelten Sämlinge, die mit C. sativus inokuliert worden waren, eine Fäule, Verfärbung sowie Nekrosis, hauptsächlich in den sekundären Wurzeln und in den Halmbasen. Unter Gewächshausbedingungen verursachte C. sativus außierdem Läsionen der unteren Blattscheide sowie eine Reduzierung des Sämlingswachstums, des Sämlingsauflaufs, des Trocken-und Frischgewichts der Wurzeln und Sprossen. Im Reagenzröhrchentest induzierten Isolate von F. acuminatum, F. solani, F. equiseti, F. compactum, E. chlamydospora und M. bolleyieine schwache bis mäßiige orange bis hell braune Verfärbung des Halmbasis und der Sekundärwurzeln. Isolate von C. spicifer besaßien die höchste Vorauflaufaktivität und induzierten eine Verschwärzung und Verkürzung der Wurzeln sowie eine Reduzierung des Sämlingsauflaufs, des Wurzelfrischgewichts sowie des Sproitrockengewichts. Unter Gewächshausbedingungen reduzierte F. acuminatum die Sämlingshöhe, die Auflaufrate sowie das Trockengewicht der Wurzeln und Sproien. Microdochium bolleyi und E. chlamydospora reduzierten das Frisch-und Trockengewicht der Wurzeln, die Auflaufrate sowie das Sproßitrockengewicht. Die Wachstumsrate der Sämlinge wurde durch F. acuminatum und C. spicifer reduziert. Alle untersuchten Pilzarten erhöhten die Befallsstärke verglichen mit der unbehandelten Kontrolle. Die hohe Isolierungsrate von C. sativus aus dem Halmbasis-und Wurzelgewebe kann zum Teil dadurch erklärt werden, dass während der Frühentwicklungsphase der Sämlinge trockene und warme Wachstumsbedingungen in diesem Gebiet herrschten. [source] Spatial pattern and neighbour effects on Helianthemum squamatum seedlings in a Mediterranean gypsum communityJOURNAL OF VEGETATION SCIENCE, Issue 4 2005Adrián Escudero Abstract Question: Do, in a semi-arid gypsum environment, neighbours condition the spatial patterns of emergence, survival and height of Helianthemum squamatum seedlings? Location: Vicinity of Chinchón, province of Madrid, Spain (40°11,N, 3° 35,W, 550 m a.s.l.) Methods: We evaluated the effects of neighbours on the survival and growth of naturally emerging Helianthemum seedlings in a semi-arid area during a two-year period. We followed a two-fold approach based on the use of neighbour models for seedling survival and growth and spatial point pattern analyses for seedling emergence, taking into account the germination date. Results: Seedlings appeared clumped in the vicinity of mature Helianthemum individuals. The neighbour models fitted showed that interactions with neighbours were extremely important for the survival and growth of Helianthemum seedlings. These models also suggest that the effects of neighbours on these variables vary with changes in spatial scale and in the abiotic conditions. Some species exerted negative or positive effects on Helianthemum seedlings only at certain spatial scales, and others exerted negative or positive effects at earlier stages of seedling development, but none later and vice versa. Conclusions: We suggest that the observed patterns are mainly influenced by small-scale modifications in soil conditions and microclimate created by neighbours, which change in time and space. [source] Fungal specificity bottlenecks during orchid germination and developmentMOLECULAR ECOLOGY, Issue 16 2008MARTIN I. BIDARTONDO Abstract Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of ,dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia, the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens, the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle. [source] Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in ArabidopsisNEW PHYTOLOGIST, Issue 3 2007Saiprasad Goud Palusa Summary ,,Pectate lyases catalyse the eliminative cleavage of de-esterified homogalacturonan in pectin, a major component of the primary cell walls in higher plants. In the completed genome of Arabidopsis, there are 26 genes (AtPLLs) that encode pectate lyase-like proteins. ,,Here, we analysed the expression pattern of all AtPLLs in different organs, at different stages of seedling development and in response to various hormones and stresses. ,,The expression of PLLs varied considerably in different organs, with no expression of some PLLs in vegetative organs. Interestingly, all PLL genes are expressed in flowers. Several PLLs are expressed highly in pollen, suggesting a role for these in pollen development and/or function. Analysis of expression of all PLL genes in seedlings treated with hormones, abiotic stresses and elicitors of defense responses revealed significant changes in the expression of some PLLs without affecting the other PLLs. The stability of transcripts of PLLs varied considerably among different genes. ,,Our results indicate a complex regulation of expression of PLLs and involvement of PLLs in some of the hormonal and stress responses. [source] Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling developmentPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2006Bai-Chen Wang Abstract Chloroplast RNA-binding proteins are involved in stabilizing stored chloroplast mRNAs and in recruiting site-specific factors that mediate RNA metabolism. In the present study, we characterized two major chloroplast RNA-binding proteins, cp29A and cp29B, by MALDI-TOF MS, N-terminal sequencing, and ESI-MS/MS following 2D-PAGE separation. Polypeptides derived from cp29A were recovered with free N-terminus or with N-terminal acetylation. In addition to the two isoforms found for cp29A, an isoform derived from cp29B was also observed to have five amino acids cleaved from its N-terminus. Results of quantitative real-time RT-PCR indicate that both genes reached maximal rates of transcription 96,h after commencement of germination and maintained relatively high levels throughout the whole life cycle. Transcription of cp29A and cp29B did not vary significantly under light or dark conditions, although production of the acetylated and N-terminally cleaved protein isoforms exhibited light dependence. Exposure of etiolated Arabidopsis seedlings to light conditions for as short as 9,h restored the modified isoforms to levels similar to those found in green plants. Identification of post-translational modifications in major chloroplast RNA-binding proteins may help elucidate their roles in seedling development and in plant RNA stabilization during the greening process. [source] Transcriptional regulation by an NAC (NAM,ATAF1,2,CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in ArabidopsisTHE PLANT JOURNAL, Issue 6 2008Michael K. Jensen Summary ATAF1 is a member of a largely uncharacterized plant-specific gene family encoding NAC transcription factors, and is induced in response to various abiotic and biotic stimuli in Arabidopsis thaliana. Previously, we showed that a mutant allele of ATAF1 compromises penetration resistance in Arabidopsis with respect to the non-host biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we have used genome-wide transcript profiling to characterize signalling perturbations in ataf1 plants following Bgh inoculation. Comparative transcriptomic analyses identified an over-representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1 -dependent manner, and that the ABA biosynthetic mutant aao3 showed increased penetration resistance to Bgh compared to wild-type plants. Furthermore, we show that ataf1 plants show ABA-hyposensitive phenotypes during seedling development and germination. Our data support a negative correlation between ABA levels and penetration resistance, and identify ATAF1 as a new stimuli-dependent attenuator of ABA signalling for the mediation of efficient penetration resistance in Arabidopsis upon Bgh attack. [source] Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in ArabidopsisTHE PLANT JOURNAL, Issue 6 2007Yajun Gao Summary Abscisic acid (ABA) is perceived by several different types of receptors in plant cells. At the cell surface, the ABA signal is proposed to be perceived by GCR2, which mediates ABA responses in seed germination, early seedling development and stomatal movement. GCR2 was also proposed to be a seven-transmembrane (7TM) G-protein-coupled receptor (GPCR). Here we characterize GCR2 and one of its two homologs, GCR2-LIKE 1 (GCL1), in ABA-mediated seed germination and early seedling development in Arabidopsis. We show that loss-of-function mutations in GCL1 did not confer ABA insensitivity. Similarly, we did not observe ABA insensitivity in three independent gcr2 alleles. Furthermore, we generated gcr2 gcl1 double mutants and found that the double mutants still had near wild-type responses to ABA. Consistent with this, we found that the transcription of ABA marker genes was induced by ABA to levels that were comparable in wild type and gcr2 and gcl1 single and double mutants. On the other hand, the loss-of-function alleles of the sole Arabidopsis heterotrimeric G protein , subunit, GPA1, were hypersensitive to ABA in the ABA-inhibition of seed germination and early seedling development, disfavoring a genetic coupling of GCR2 by GPA1. Using multiple robust transmembrane prediction systems, GCR2 was predicted not to be a 7TM protein, a structural hallmark of GPCRs. Taken together, our results do not support the notion that GCR2 is an ABA-signaling GPCR in seed germination and early seedling development. [source] New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in ArabidopsisTHE PLANT JOURNAL, Issue 6 2005Judith Craft Summary To facilitate glucocorticoid-inducible transgene expression from the pOp promoter in Arabidopsis the ligand-binding domain of a rat glucocorticoid receptor (GR LBD) was fused to the amino terminus of the synthetic transcription factor LhG4 to generate LhGR-N. Fusions bearing the GR LBD at other positions in LhG4 exhibited incomplete repression or inefficient induction. LhGR-N was stringently repressed in the absence of exogenous glucocorticoid but was fully activated by addition of 2 ,m dexamethasone which resulted in 1000-fold increase in GUS reporter activity. Half maximal induction was achieved with 0.2 ,m dexamethasone. Reporter transcripts were detectable within 2 h of dexamethasone application and peaked 4,10 h later. Neither LhGR-N nor dexamethasone affected seedling development although ethanol retarded development when used as a solvent for dexamethasone. The efficiency of the pOp target promoter was improved 10- to 20-fold by incorporating six copies of the ideal lac operator with sufficient inter-operator spacing to allow simultaneous occupancy. Introduction of the TMV , sequence into the 5,UTR resulted in a further 10-fold increase in dexamethasone-inducible reporter activity and an increase in the induction factor to 104. Although promoters containing the TMV , sequence exhibited slightly increased basal expression levels in the absence of dexamethasone, stringent regulation of the cytokinin biosynthetic gene ipt was achieved with all promoters. Despite the severity of the induced ipt phenotypes, transcripts for the KNOX homoeodomain transcription factors BREVIPEDICELLUS and SHOOTMERISTEMLESS were not significantly increased within 48 h of dexamethasone application to seedlings. [source] An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrestedTHE PLANT JOURNAL, Issue 2 2003Geneviève Frick Summary A key reaction in the biosynthesis of chlorophylls (Chls) a and b from cyanobacteria through higher plants is the strictly light-dependent reduction of protochlorophyllide (Pchlide) a to chlorophyllide (Chlide) a. Angiosperms, unlike other photosynthetic organisms, rely exclusively upon this mechanism to reduce Pchlide and hence require light to green. In Arabidopsis, light-dependent Pchlide reduction is mediated by three structurally related but differentially regulated NADPH:Pchlide oxidoreductases, denoted as PORA, PORB, and PORC. The PORA and PORB genes, but not PORC, are strongly expressed early in seedling development. In contrast, expression of PORB and PORC, but not PORA, is observed in older seedlings and adult plants. We have tested the hypothesis that PORB and PORC govern light-dependent Chl biosynthesis throughout most of the plant development by identifying porB and porC mutants of Arabidopsis, the first higher plant por mutants characterized. The porB-1 and porC-1 mutants lack the respective POR transcripts and specific POR isoforms because of the interruption of the corresponding genes by a derivative of the maize Dissociation (Ds) transposable element. Single por mutants, grown photoperiodically, display no obvious phenotypes at the whole plant or chloroplast ultrastructural levels, although the porB-1 mutant has less extensive etioplast inner membranes. However, a light-grown porB-1 porC-1 double mutant develops a seedling-lethal xantha phenotype at the cotyledon stage, contains only small amounts of Chl a, and possesses chloroplasts with mostly unstacked thylakoid membranes. PORB and PORC thus seem to play redundant roles in maintaining light-dependent Chl biosynthesis in green plants, and are together essential for growth and development. [source] |