Home About us Contact | |||
Seed Number (seed + number)
Selected AbstractsSeed variation among annual ryegrass cultivars in south-eastern USA and the relationship with seedling vigour and forage productionGRASS & FORAGE SCIENCE, Issue 4 2002B. C. Venuto Abstract Annual ryegrass (Lolium multiflorum Lam.) is grown on more than one million ha in the south-eastern USA each year. Recommended and actual seeding rates vary substantially within the region. The objective of this study was to evaluate variation in seed weight, germination, seedling vigour and seasonal yield performance among annual ryegrass cultivars. During 1997, 1998 and 1999, seed from fourteen commercial cultivars was weighed and germinated to determine numbers of pure live seed (PLS) m,2 before yield evaluation at four locations. Seed from ten cultivars was planted at 0·7 and 2·0 cm depth in a greenhouse study to evaluate relative seedling vigour. Cultivar mean single-seed weight ranged from 2·4 to 4·8 mg in 1997, 1·8 to 4·5 mg in 1998, and 2·6 to 4·6 mg in 1999. Seed germination ranged from 78·8% to 98·0% in 1997, 82·3 to 98·3% in 1998 and 77·8 to 98·3% in 1999. Seed number, PLS m,2, ranged from 675 to 1289 in 1997, 710 to 1550 in 1998, and 717 to 1179 in 1999. Among the ten cultivars evaluated for seedling vigour, seedling weight differed between planting depths and a significant cultivar by year interaction was observed. Seedling weight was highly correlated with seed weight at each seeding depth. The effect of increasing number of PLS m,2 on subsequent yield performance, although small, was consistently negative. These results indicate that target plant populations may be obtained more economically by adjusting seeding rates for seed size differences among cultivars and seed lots of annual ryegrass. [source] Reproductive Biology of the Epiphytic Bromeliad Werauhia gladioliflora in a Premontane Tropical ForestPLANT BIOLOGY, Issue 2 2005A. Cascante-Marín Abstract: The floral phenology, fruit and seed production, and self-compatibility of Werauhia gladioliflora, an epiphytic bromeliad with a wide distribution, were studied in a premontane forest in the Monteverde area in Costa Rica. The species presents the pollination syndrome of chiropterophily, and it is visited by the small bats Hylonycteris underwoodi and Glossophaga commissarisi (Glossophaginae). The population flowering period extended from October to early December (end of rainy season) and seed dispersal occurred from February to April (dry season). Most plants opened a single flower per night, either every day or at one-day intervals during the flowering period. In natural conditions, the average fruit set amounted to almost half of the potential output, but individual fecundity (number of seeds) remained high. Seed number per fruit and germination capacity after artificial selfing and out-crossing treatments did not differ from natural pollination conditions. Werauhia gladioliflora exhibited high levels of autonomous self-pollination and self-compatibility at the individual and population level, characters associated with the epiphytic habitat. These reproductive traits are also associated with early colonizer species, yet life history traits, such as seed dispersal, seedling establishment success, and growth, are likely to have a major role in determining the presence of this species in the successional vegetation patches scattered over the studied premontane area. [source] Resource distribution and the trade-off between seed number and seed weight: a comparison across crop speciesANNALS OF APPLIED BIOLOGY, Issue 1 2010B.L. Gambín In grain crops, total sink capacity is usually analysed in terms of two components, seed number and individual seed weight. Seed number and potential individual seed weight are established at a similar timing, around the flowering period, and seed weight at maturity is highly correlated with the potential established earlier. It is known that, within a species, available resources during the seed set period are distributed between both yield components, resulting in a trade-off between seed number and seed weight. Here we tested if this concept could apply for interspecific comparisons, where combinations of numbers and size across species could be related to the total available resources being either allocated to more seed or larger potential individual seed weight during the seed set period. Based on this, species differences in seed weight should be related to resource availability per seed around the period when seed number is determined. Resource availability per seed was estimated as the rate of increase in aboveground biomass per seed around the period of seed set. Data from 15 crop species differing in plant growth, seed number, seed weight and seed composition were analysed from available literature. Because species differed in seed composition, seed weight was analysed following an energy requirement approach. There was an interspecific trade-off relationship between seed number per unit of land area and seed weight (r = 0.92; F(1, 13) = 32.9; n = 15; P < 0.001). Seed weight of different species was positively correlated (r = 0.90; F(1, 13) = 52.9; n = 15; P < 0.001) with resource availability per seed around the seed set period. This correlation included contrasting species like quinoa (Chenopodium quinoa; ,100000 seeds m,2, ,4 mg equivalent-glucose seed,1) or peanut (Arachis hypogaea; ,800 seeds m,2, ,1000 mg equivalent-glucose seed,1). Seed number and individual seed weight combinations across species were related and could be explained considering resource availability when plants are adjusting their seed number to the growth environment and seeds are establishing their storage capacity. Available resources around the seed set period are proportionally allocated to produce either many small seeds or few larger seeds depending on the particular species. [source] Intraspecific seed trait variations and competition: passive or adaptive response?FUNCTIONAL ECOLOGY, Issue 3 2009Cyrille Violle Summary 1The phenotype of offspring depends on the abiotic and biotic environment in which the parents developed. However, the direct effects of competition experienced by parent plants on single-seed traits are poorly documented despite their impact on plant fitness. 2We hypothesize that single-seed traits can differentially respond to the resource deficiencies of parent plants due to competition: seed quality may decrease as seed number does, magnifying the negative effects of competition for offspring (,passive response' hypothesis), or increase and then enhance offspring fitness to offset the reduction in offspring number (,adaptive response' hypothesis). Here we tested these hypotheses for four single-seed traits. We assessed the sensibility of their responses to changes in competition intensity due to species with different competitive effects and to contrasting soil nitrogen conditions. 3In a common-garden experiment, four single-seed traits related to fitness , seed mass, seed nitrogen concentration (SNC), germinability and the timing of germination , were measured on a phytometer species transplanted in 14 different neighbours grown in monoculture with and without soil nitrogen limitation. 4Under nitrogen-limiting conditions, the responses of SNC and of the timing of germination were passive and mainly related to the effects of neighbours on soil nitrogen availability, as shown by the increase in SNC with N-fixing neighbours. Within-individual seed mass variability decreased with increasing competition intensity, as an adaptive response to counterbalance the reduction in seed production. With nitrogen supplementation, competitors had no detectable effect on single-seed traits despite an overall increase in SNC and germination rate, confirming their nitrogen-dependent passive responses to competition. Germinability did not change among treatments. 5The impact of competition on single-seed traits depends on both phytometer trait identity and resource modulation by neighbours. The passive response of seed chemical composition to competitors may magnify the competitive effects on offspring. By contrast, the adaptive response of seed size variability may offset these competitive effects. As a consequence, experiments looking at the fitness consequences of competition should not only consider the effects on fitness parameters of a target plant but also on the offspring. [source] Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.)GLOBAL CHANGE BIOLOGY, Issue 8 2002P. V. Vara Prasad Abstract It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed-set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol,1) or elevated (700 µmol mol,1) CO2 levels. There were strong negative relations between temperature over a range of 28/18,40/30 °C and seed-set (slope, ,,6.5% °C,1) and seed number per pod (, 0.34 °C,1) under both ambient and elevated CO2 levels. Exposure to temperature >,28/18 °C also reduced photosynthesis (, 0.3 and ,,0.9 µmol m,2 s,1 °C,1), seed number (, 2.3 and ,,3.3 °C,1) and seed yield (, 1.1 and ,,1.5 g plant,1 °C,1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed-set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature >,31/21 °C linearly reduced seed size by 0.07 g °C,1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development. [source] Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbsGLOBAL ECOLOGY, Issue 6 2009P. De Frenne ABSTRACT Aim, To investigate the effect of temperature, latitude and local environment on the reproductive traits of widespread perennial forest herbs to better understand the potential impacts of rising temperatures on their population dynamics and colonization capacities. Location, Six regions along a latitudinal gradient from France to Sweden. Methods, Within each region, we collected data from three to five populations of up to six species. For each species, several variables were recorded in each region (temperature, latitude) and population (local abiotic and biotic environmental variables), and seed production and germination were estimated. Resource investment in reproduction (RIR) was quantified as seed number × seed mass, while germinable seed output (GSO) was expressed as seed number × germination percentage. We performed linear regression and mixed effect models to investigate the effects of temperature (growing degree hours), latitude and local abiotic and biotic environment on RIR and GSO. Results, Temperature and latitude explained most of the variation in RIR and GSO for early flowering species with a northerly distribution range edge (Anemone nemorosa, Paris quadrifolia and Oxalis acetosella). Reproduction of the more southerly distributed species (Brachypodium sylvaticum, Circaea lutetiana and Primula elatior), in contrast, was independent of temperature/latitude. In the late summer species, B. sylvaticum and C. lutetiana, variation in RIR and GSO was best explained by local environmental variables, while none of the investigated variables appeared to be related to reproduction in P. elatior. Main conclusions, We showed that reproduction of only two early flowering, northerly distributed species was related to temperature. This suggests that the potential reproductive response of forest herbs to climate warming partly depends on their phenology and distribution, but also that the response is to some extent species dependent. These findings should be taken into account when predictions about future shifts in distribution range are made. [source] Large-scale geographical trends in fruit traits of vertebrate-dispersed temperate plantsJOURNAL OF BIOGEOGRAPHY, Issue 4 2003Arndt Hampe Abstract Aim, To assess large-scale geographical trends in the character of fleshy, vertebrate-dispersed fruits. Location, Europe between central Sweden and southern Spain. Methods, Analyses of fruit of sixty-three plant species from twenty-nine families were compiled from four regional data sets. Four structural and five chemical fruit traits were analysed intraspecifically to control rigorously for phylogenetic lineage effects. Trends were examined in relation to various biological features of the considered species. Results, Contents of soluble carbohydrate and lipids decreased markedly northwards. Fruit diameter and fresh mass peaked at the wettest site, while the pulp water content remained more constant throughout the gradient than any other fruit trait. Ash content, seed number and seed mass did not change, while the nitrogen content showed conflicting trends. No relation was detected between observed variation in fruit traits and fruit type, fruit colour, ripening season, plant growth form, leaf longevity, or geographical distribution of the considered plant species. Main conclusions, Considerable intraspecific variability exists in vertebrate-dispersed fruits on large geographical scales. Climate presumably affects particularly those traits related to carbon and water gain and storage. Most research on fruit,frugivore interactions has been carried out on small spatial scales and failed to find matchings between frugivore communities and the character of fleshy fruits. I suggest that explicitly addressed large-scale surveys on the geographical variability of fruits and their disperser assemblages are needed to elucidate their spatial patterns and to determine the extent to which fleshy fruit traits are shaped by animals and/or abiotic factors. [source] Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana luteaJOURNAL OF ECOLOGY, Issue 1 2000Marc Kéry Summary 1,We studied reproduction and offspring performance in relation to population size in the declining self-incompatible perennials Primula veris and Gentiana lutea. In both species, reproduction was strongly reduced in small populations, where plants produced fewer seeds per fruit and per plant. Total seed mass per plant was higher in large populations, but individual seeds were smaller, indicating a trade-off between seed number and size. Reproduction was depressed most strongly in populations consisting of less than c. 200 (P. veris) and c. 500 plants (G. lutea), respectively. 2,The inclusion of plant size (an integrated measure of habitat quality) in the statistical models did not change the relationships between fecundity and population size. Pollen limitation or inbreeding depression in small populations are therefore more likely explanations for these patterns than is habitat quality. 3,Germination rate and survival of seedlings in a common environment was not related to population size in either species, although P. veris developed into larger rosettes when seeds were derived from large populations. This suggests that inbreeding depression occurs in small populations of P. veris. 4,In a factorial fertilizer-by-competition experiment with P. veris, offspring from larger populations grew significantly larger and responded more strongly to fertilizer. For this declining species genetic deterioration as a result of habitat fragmentation may therefore aggravate the effects of environmental changes such as habitat eutrophication. 5,Our results suggest that small populations may face an increased short-term risk of extinction because of reduced reproduction, and an increased long-term risk because they are less able to respond to environmental changes. [source] Phenotypic Plasticity of Life History Characteristics: Quantitative Analysis of Delayed Reproduction of Green Foxtail (Setaria viridis) in the Songnen Plain of ChinaJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2008Hai-Yan Li Abstract Green foxtail (Setaria viridis L.) is a common weed species in temperate regions. Research on the effect of delayed reproduction on the phenotypic plasticity and regularity of the vegetative and reproductive growth is of vital significance for understanding population regulation and control of the weed in the growing season. Green foxtail seeds were sown every 10 days from 25 June to 24 August of 2004. The growth and production metrics were measured via harvesting tufts and statistical analysis was carried out. The results showed that the reproductive tillers, seed number, seed biomass and one thousand-seed weight of plants at the first sowing (25 June) approximately increased 28.8, 7 827.0, 1 104.0 and 12.3 times compared with that at the last sowing (24 August), respectively. Total tillers, reproductive tillers and height increased linearly as the reproductive period delayed, however, biomass increased exponentially. Quadratic equations best explained the relationships between the delayed reproductive period and seed number, inflorescence length, one thousand-seed weight, seed biomass. Based on the quantity and quality of seed production, weeding young seedlings emerging before July can be the most effective weed-control strategy in the Songnen Plain. [source] Population-level traits that affect, and do not affect, invasion successMOLECULAR ECOLOGY, Issue 6 2010N. J. SANDERS What allows some species to successfully colonize a novel environment while others fail? Numerous studies in invasion biology have sought to answer this question, but those studies have tended to focus on traits of species or individuals (e.g. body size, seed size, seed number), and these traits have largely been found to be weak predictors of invasion success. However, characteristics of colonizing populations (e.g. genetic diversity, density, age structure) might also be important for successful establishment, as the authors of a study published in this issue of Molecular Ecology show (Crawford & Whitney 2010). By experimentally manipulating the density and genetic diversity of colonizing populations of Arabidopsis thaliana, the authors found that genetic diversity, but not population density, increased colonization success. Importantly, the effects of genetic diversity on colonization success were both additive and non-additive, suggesting that traits associated with particular genotypes and complimentarity among genotypes contribute to colonization success. This research highlights the importance of considering within-species variation and characteristics of entire populations in predicting colonization success. [source] The effect of twig architecture and seed number on seed size variation in subtropical woody speciesNEW PHYTOLOGIST, Issue 4 2009Hong Chen Summary ,,This study aims to determine the effect of twig (current year shoot) size on seed size variation and to test whether a seed size vs number tradeoff occurs for the twigs of subtropical broad-leaved species. ,,Fruit-bearing twigs were sampled for 55 woody species (including 33 evergreen and 22 deciduous dicot species) from a southwest Chinese forest. Twig size, fruit size and number, and seed size and number were measured for each species. The relationships among these functional traits were determined both across species and across correlated phyletic divergences. ,,Total fruit mass and total seed mass were positively correlated with twig size. Seed size was positively associated with fruit size, which was, in turn, positively correlated with twig diameter, but negatively correlated with the ratio of twig length to diameter. The effect of twig size on seed size variation was not significant, possibly as a result of the large variation in seed number per fruit. Cross-species and across-phyletic divergence analyses revealed that seed size was negatively and isometrically correlated with seed number per twig mass in both the evergreen and deciduous species groupings, demonstrating the existence of tradeoff between seed size and number. ,,A seed size vs number tradeoff is detectable in the twigs of woody species. Comparatively little of the variance in seed size was attributable to twig size variation. [source] Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomatoNEW PHYTOLOGIST, Issue 1 2002Jennifer L. Poulton Summary ,,To further characterize the effects of mycorrhizal infection and soil phosphorus (P) availability on plant fitness, this study examined their effects on the female and male functions, as well as vegetative growth of tomato (Lycopersicon esculentum). ,,Two cultivars of tomato were grown in a glasshouse under three treatment combinations: nonmycorrhizal, low P (NMPO); nonmycorrhizal, high P (NMP3); and mycorrhizal, low P (MPO). ,,Mycorrhizal infection and high soil P conditions improved several vegetative (leaf area, days until first flower and leaf P concentration) and reproductive traits (total flower production, fruit mass, seed number and pollen production per plant, and mean pollen production per flower). In general, mycorrhizal and P responses were greater for reproductive traits than vegetative traits. In one cultivar, these responses were greater for the male function than the female function. ,,Thus, mycorrhizal infection and high soil P conditions enhanced fitness through both the female and male functions. Similar trends were usually observed in the NMP3 and MPO treatments, suggesting that mycorrhizal effects were largely the result of improved P acquisition. [source] A comparative study of seed number, seed size, seedling size and recruitment in grassland plantsOIKOS, Issue 3 2000Anna Jakobsson In this study we analyse relationships between seed number, seed size, seedling size and recruitment success in grassland plants. The often hypothesised trade-off between seed size and seed number was supported by a cross-species analysis and by an analysis of 35 phylogenetically independent contrasts, derived from a data-set of 72 species. Apart from among-species relatedness, we also controlled for possible confounding effect of plant size that may influence both seed size and seed number. A sowing experiment with 50 species was performed in the field. The seeds were sown in a grassland and subjected to two treatments, disturbance and undisturbed sward. Evidence for seed-limited recruitment was obtained for 45 of the species. Disturbance had a significant, or nearly significant, positive effect on recruitment for 16 of the 45 species. The relative recruitment in undisturbed sward increased with increased seed size, and both recruitment success and seedling size were positively related to seed size. We suggest that a trade-off between competitive ability and number of recruitment opportunities follows from the trade-off between seed size and seed number, through a causal chain from seed size via seedling size to recruitment success. The relationships between seed size, seed number and recruitment may be an important underlying mechanism for abundance and dynamics of plant species in grassland vegetation. This is an example of a direct link between evolutionary life-history theory, and theory of plant community structure. [source] Insect and wind pollination of an alpine biennial Aconitum gymnandrum (Ranunculaceae)PLANT BIOLOGY, Issue 6 2009Y. W. Duan Abstract Wind pollination can provide reproductive insurance for animal-pollinated dioecious plants in the absence of available pollinators, but combinations of insect and wind pollination (ambophily) have rarely been studied in hermaphrodite herbs. We examined the stable occurrence of insect pollination and wind pollination over 4 years in a population of a biennial Aconitum species (A. gymnandrum) with actinomorphic and degenerate sepals. The total frequency of visits of two bumblebee species showed no distinct fluctuations in the studied population among the 4 years. However, seed production of netted flowers after emasculation indicated wind pollination had occurred. The seed number of bagged flowers with one visit by bumblebees was significantly less than that of netted flowers after one visit, or in control flowers. Both seed number and fruit set of netted flowers were significantly lower than in control flowers. These results suggest that wind pollination provides supplementary pollen to unvisited and/or once-visited flowers, but accounts for only a small amount of seed production compared to bumblebee pollination in natural conditions. Such a combination of insect and wind pollination might play an important role in maintaining sexual reproduction of this biennial herb, allowing it to persist in arid habitats on the Qinghai-Tibetan Plateau, especially during Quaternary glacial periods when pollinator populations oscillated extensively. [source] Yield assessment of integument-led seed growth following targeted repair of auxin response factor 2PLANT BIOTECHNOLOGY JOURNAL, Issue 8 2008Rhiannon Hughes Summary It is becoming increasingly vital to improve the yield of seed crops to feed an expanding population and, more recently, for biofuel production. One strategy to increase the yield is to increase the seed size, provided that there is not a concomitant decrease in seed number. In a previous study, we described a mutant in the AUXIN RESPONSE FACTOR 2 (ARF2) gene which produced extra cells in the seed coat and, subsequently, enlarged seeds. However, arf2 mutant plants also show severely reduced self-fertility caused, in part, by over-elongated sepals that prevent flower opening. As a low seed set increases individual seed size, a meaningful comparison of the yield in arf2 and wild-type plants could not be conducted. In this study, we show that targeted expression of wild-type ARF2 in the sepals and petals of arf2-9 mutant flowers restores flower opening and dramatically increases seed set. The restored plants retain both enlarged integuments and increased seed size, reinforcing previous evidence that arf2 mutations increase seed weight through their effect on integuments and not only via reduced fertility. We also show that the measurement of the harvest index in Arabidopsis is useful in assessing the impact of introduced traits on the yield. [source] Genetic structure and random amplified polymorphic DNA diversity of the rapidly declining Angelica palustris (Apiaceae) in Eastern Germany in relation to population size and seed productionPLANT SPECIES BIOLOGY, Issue 3 2005ANKE DITTBRENNER Abstract Angelica palustris (Besser) Hoffm. (Apiaceae) is a rare wetland community species that is currently rapidly declining because of changes in land use. In the present study, we analyzed patterns of random amplified polymorphic DNA (RAPD) variation among nine populations of A. palustris in Germany to assess its overall genetic condition. We aimed to examine the level of genetic diversity as well as its local differentiation in relation to population size and geographic distancing between populations. Results achieved from ,ST statistics and amova indicated that most of the variability is distributed among individuals within the populations (57.7%), whereas among-population variation accounted for 30.2% of the variation. Variation between regions was 12.1%. This corresponds to the results of a multivariate analysis based on the asymmetric Soerensen similarity, which also suggested a strong population differentiation, as would be expected from a short-lived species with limited seed dispersal capacities that had never covered extensive areas in Eastern Germany. Consistently the geographic differentiation was not reflected in the RAPD profile. Significant correlations were noted between population size and the percentage of polymorphic loci (P < 0.05) and genetic diversity (P < 0.05). An analysis of seed production showed positive relationships between average seed number and levels of genetic variation. Our results support concerns regarding the loss of genetic diversity in endangered plant populations because this process might have harmful effects on reproductive fitness. [source] Resource distribution and the trade-off between seed number and seed weight: a comparison across crop speciesANNALS OF APPLIED BIOLOGY, Issue 1 2010B.L. Gambín In grain crops, total sink capacity is usually analysed in terms of two components, seed number and individual seed weight. Seed number and potential individual seed weight are established at a similar timing, around the flowering period, and seed weight at maturity is highly correlated with the potential established earlier. It is known that, within a species, available resources during the seed set period are distributed between both yield components, resulting in a trade-off between seed number and seed weight. Here we tested if this concept could apply for interspecific comparisons, where combinations of numbers and size across species could be related to the total available resources being either allocated to more seed or larger potential individual seed weight during the seed set period. Based on this, species differences in seed weight should be related to resource availability per seed around the period when seed number is determined. Resource availability per seed was estimated as the rate of increase in aboveground biomass per seed around the period of seed set. Data from 15 crop species differing in plant growth, seed number, seed weight and seed composition were analysed from available literature. Because species differed in seed composition, seed weight was analysed following an energy requirement approach. There was an interspecific trade-off relationship between seed number per unit of land area and seed weight (r = 0.92; F(1, 13) = 32.9; n = 15; P < 0.001). Seed weight of different species was positively correlated (r = 0.90; F(1, 13) = 52.9; n = 15; P < 0.001) with resource availability per seed around the seed set period. This correlation included contrasting species like quinoa (Chenopodium quinoa; ,100000 seeds m,2, ,4 mg equivalent-glucose seed,1) or peanut (Arachis hypogaea; ,800 seeds m,2, ,1000 mg equivalent-glucose seed,1). Seed number and individual seed weight combinations across species were related and could be explained considering resource availability when plants are adjusting their seed number to the growth environment and seeds are establishing their storage capacity. Available resources around the seed set period are proportionally allocated to produce either many small seeds or few larger seeds depending on the particular species. [source] Physiological responses of lupin genotypes to terminal drought in a Mediterranean-type environmentANNALS OF APPLIED BIOLOGY, Issue 3 2007J.A. Palta Abstract Field experiments concerning lupin grown in a low-rainfall environment of the Mediterranean climatic region of Western Australia were conducted over three seasons to identify and evaluate the characteristics that maximise yield per unit of rainfall. The characteristics of early flowering and podding, high pod retention, fast rates of seed filling, osmotic adjustment and the degree of dry matter transfer from stem to the seed were studied in 12 lupin genotypes differing in seed yield under conditions of terminal drought. To allow recently released cultivars and advanced breeding lines to be evaluated, five to six genotypes were included in the first and the third year and nine in the second year. The genotypes were grown rainfed until pod set and then under a rainout shelter. Flowering and podding dates, pod retention, seed growth rate and osmotic adjustment were measured in detail, together with leaf water potential, seed yield and its components. The timing and intensity of development of the terminal drought varied from average in 1998 and 1999 to extreme in 2000. In each year, the seed yield under terminal drought showed genotypic differences, which appeared consistent with the timing and intensity of the development of terminal drought. Early flowering and podding were significantly correlated with seed yield. Fast rates of seed growth were highly and significantly correlated with high yields regardless of the intensity of development of terminal drought. Pod retention was highly correlated with yield in seasons in which the intensity of the development of terminal drought was average but not under extreme conditions of terminal drought. This was because the seed number per pod was markedly reduced to compensate for the high number of pods retained. Osmotic adjustment did not occur during the development of terminal drought in any of the genotypes. Dry matter transfer from stems to seeds was insignificant and not related to seed yield, suggesting that it is not a useful characteristic in screening for high yield under terminal drought. [source] Spatial Variation in the Strength of a Trophic Cascade Involving Ruellia nudiflora (Acanthaceae), an Insect Seed Predator and Associated Parasitoid Fauna in MexicoBIOTROPICA, Issue 2 2010Luis Abdala-Roberts ABSTRACT Spatial variation in the strength of herbivore top-down control represents an important source of variation in plant fitness measures and community structure and function. By measuring seed predator (larvae of a Noctuid moth) and parasitoid impacts on Ruellia nudiflora across a broad spatial scale in Yucatan (Mexico), this study addressed the following: (1) to what extent does seed predator and parasitoid attack intensity associated with R. nudiflora vary spatially? (2) Does parasitoid attack result in a positive indirect effect on the plant, and does the intensity of this effect vary spatially? During the peak of fruit production (late June,early July) of 2005, we collected fruits from 21 R. nudiflora populations and grouped them into four regions: center, east, north and south. For each fruit we recorded: observed seed number, number of seeds eaten, seed predator presence, parasitoid presence and number of seeds ,saved' by parasitoids. Seed predators attacked ca 30 percent of fruits/plant on average, while parasitoids were found in 24 percent of seed predator-attacked fruits. Results indicated spatial variation in seed predator and parasitoid attack levels; interestingly, a contrasting spatial gradient of attack intensity was observed: populations/regions with greatest parasitoid attack levels usually had the lowest seed predator attack levels and vice versa, suggesting top-down control of parasitoids on seed predators. We observed a weak overall indirect impact of parasitoids on R. nudiflora (4% seeds ,saved' on average), which nonetheless varied strongly across populations (e.g., close to 14% seeds saved at one population). Findings indicate a geographical structuring of interaction strengths across populations, as well as spatial variation in the strength of parasitoid cascading effects on plant reproduction. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source] Wyoming Big Sagebrush Density: Effects of Seeding Rates and Grass CompetitionRESTORATION ECOLOGY, Issue 2 2002Mary I. Williams Abstract The mining industry commonly seeds shrubs and grasses concurrently on coal-mined lands of northeastern Wyoming, but ecological interactions between seeded shrubs and grasses are not well documented. Artemisia tridentata Nutt. ssp. wyomingensis (Beetle and Young) (Wyoming big sagebrush) is the dominant pre-mining shrub on many Wyoming mine sites. Despite past failures to establish Wyoming big sagebrush, the Wyoming Department of Environmental Quality, Land Quality Division's rules and regulations require establishment of 1 shrub per m2 on 20% of post-mined land in Wyoming. A study was established at the Belle Ayr Coal Mine south of Gillette, Wyoming to evaluate the effects of sagebrush seeding rates and grass competition on Wyoming big sagebrush seedling density. Three sagebrush seeding rates (1, 2, and 4 kg pure live seed [pls]/ha; 350, 700, and 1,400 pls/m2, respectively) and seven cool-season perennial grass mixture seeding rates (0, 2, 4, 6, 8, 10, and 14 kg pls/ha; 0, 187, 374, 561, 750, 935, and 1,309 pls/m2, respectively) were applied during winter 1998,1999. Pascopyrum smithii (Rydb.) A. Love (western wheatgrass), Elymus lanceolatus (Scribner & J.G. Smith) Gould (thickspike wheatgrass), and Elymus trachycaulus (Link) Gould ex Shinners (slender wheatgrass) comprised the grass seed mix (equal seed numbers of each species). Sagebrush seedling density differed among sagebrush seeding rates but not among grass seeding rates. On all sampling dates in 1999 and 2000, sagebrush seedling density differed among sagebrush rates and was greatest at the 4 kg pls/ha sagebrush seeding rate. All sagebrush seeding rates provided densities of at least 1 shrub per m2 after two growing seasons. Grass density and production in 2000 suggest that adequate grass production (75 g/m2) was achieved by seeding at 6 to 8 kg pls/ha. Within these grass seeding rates, four or more sagebrush seedlings per m2 were attained when sagebrush was seeded at 2 to 4 kg pls/ha. Use of these seeding rate combinations in mine reclamation can achieve Wyoming big sagebrush standards and reduce reseeding costs. [source] |