Home About us Contact | |||
Seed Dispersal Kernel (seed + dispersal_kernel)
Selected AbstractsEstimation of the seed dispersal kernel from exact identification of source plantsMOLECULAR ECOLOGY, Issue 23 2007JUAN J. ROBLEDO-ARNUNCIO Abstract The exact identification of individual seed sources through genetic analysis of seed tissue of maternal origin has recently brought the full analytical potential of parentage analysis to the study of seed dispersal. No specific statistical methodology has been described so far, however, for estimation of the dispersal kernel function from categorical maternity assignment. In this study, we introduce a maximum-likelihood procedure to estimate the seed dispersal kernel from exact identification of seed sources. Using numerical simulations, we show that the proposed method, unlike other approaches, is independent of seed fecundity variation, yielding accurate estimates of the shape and range of the seed dispersal kernel under varied sampling and dispersal conditions. We also demonstrate how an obvious estimator of the dispersal kernel, the maximum-likelihood fit of the observed distribution of dispersal distances to seed traps, can be strongly biased due to the spatial arrangement of seed traps relative to source plants. Finally, we illustrate the use of the proposed method with a previously published empirical example for the animal-dispersed tree species Prunus mahaleb. [source] Developmental changes in habitat associations of tropical treesJOURNAL OF ECOLOGY, Issue 3 2007LIZA S. COMITA Summary 1Recent studies have documented local-scale associations between tree species and topographic and edaphic habitat types in forests worldwide. To determine whether such associations form at early life stages, we compared species' positive associations with five habitat types (high plateau, low plateau, slope, streamside, and swamp) at two life stages for 80 tree and shrub species in a Panamanian lowland forest. 2Nineteen significant, positive habitat associations were detected at the small tree stage (seedlings and saplings , 20 cm tall and < 1 cm d.b.h.), and 18 at the large tree stage (individuals , 1 cm d.b.h.), according to results of torus-translation randomization tests. The majority of species did not show consistent associations at the two stages. Of the 30 species significantly associated with a habitat, only five were associated with the same habitat at both stages. Overall, more species were associated with the wetter slope habitat at the large tree stage compared with the small tree stage. 3For a subset of species, we examined the relationship between observed habitat associations and seed dispersal and seedling establishment patterns by using species-specific seed dispersal kernels to predict seed rain into each habitat. 4Two-thirds of species associated with a habitat at the large tree stage had higher predicted seed densities in the associated habitat relative to other habitat types, indicating that limited seed dispersal acts to reinforce habitat associations for most species. In contrast, only one-third of the species associated with a habitat at the large tree stage showed evidence of higher seedling establishment rates in the associated habitat compared with other habitats, and an equal number of species appeared to have lower rates of establishment in the habitat that large trees of the species were associated with. 5Overall, our results indicate that habitat associations of large trees typically do not form at early life stages. Rather, many species appear to exhibit different ecological habitat preferences across life stages. Future studies of species' habitat associations should therefore include multiple life stages in order to detect developmental shifts in ecological preferences. [source] Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbsJOURNAL OF ECOLOGY, Issue 6 2005M. B. SOONS Summary 1Although habitat loss and fragmentation are assumed to threaten the regional survival of plant species, their effects on regional species dynamics via seed dispersal and colonization have rarely been quantified. 2We assessed the impact of habitat loss and fragmentation on the connectivity, and hence regional survival, of wind-dispersed plant species of nutrient-poor semi-natural grasslands. We did this using a new approach to relate quantified habitat loss and fragmentation to quantified colonization capacity. 3We quantified loss and fragmentation during the 20th century of moist, nutrient-poor semi-natural grasslands in study areas in the Netherlands, as well as their current distribution. After testing how well the habitat distribution matches species distributions of two wind-dispersed grassland forbs (Cirsium dissectum, representative of species with long-distance wind dispersal, and Succisa pratensis, representative of species with short-distance wind dispersal), we combined the habitat distribution data with simulated seed dispersal kernels in order to quantify the impact on connectivity. 4Habitat loss and fragmentation has dramatically reduced both the area (by 99.8%) and the connectivity of the grasslands. The remaining grasslands are practically isolated for seeds dispersed by wind, even for species with high wind dispersal ability (for which, interestingly, connectivity by wind dispersal decreased most). Linear landscape elements hardly contribute to connectivity by wind dispersal. Regional survival of the studied species has become completely dependent on the survival of a few large populations in nature reserves. Other remaining populations are decreasing in number and size and have low colonization capacity. 5Habitat loss and fragmentation have drastically changed the regional species dynamics of wind-dispersed plant species, indicating that it is of utmost importance to preserve remaining populations in nature reserves and that the probability of colonization of new or restored sites is very low, unless the sites are adjacent to occupied sites or dispersal is artificially assisted. [source] |