Seed Dispersal (seed + dispersal)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Seed Dispersal

  • long-distance seed dispersal
  • primary seed dispersal

  • Terms modified by Seed Dispersal

  • seed dispersal distance
  • seed dispersal kernel
  • seed dispersal mode

  • Selected Abstracts


    Relative Importance of Seed-Bank and Post-Disturbance Seed Dispersal on Early Gap Regeneration in a Colombian Amazon Forest

    BIOTROPICA, Issue 4 2010
    Luis S. Castillo
    ABSTRACT Early forest gap regeneration may be generated by postdisturbance seed rain and by seed, seedling or bud banks (i.e., resprouting). The relative importance of each process may depend on several factors (e.g., fruit/seed production, abundance and behavior of seed dispersers, gap characteristics, etc.). We experimentally compared the importance of seed-bank and seed-rain affecting early recruitment of seedlings in an Amazonian forest (Zafire Biological Station, Colombia), using soil transplants from forests to gaps and seed rain enclosures. We found that, during the 8-mo study, the seed-bank contributed with a larger number of individuals and species than seed-rain. The low seedling recruitment rates may be associated with reduced populations of animal seed-dispersers due to hunting and/or low levels of forest fruit production. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]


    Patterns of Seed Dispersal and Dispersal Failure in a Hawaiian Dry Forest Having Only Introduced Birds

    BIOTROPICA, Issue 4 2010
    Charles G. Chimera
    ABSTRACT Dry forests are among the most endangered natural communities in the Hawaiian Islands. Most have been reduced to isolated trees and small forest fragments in which native tree species reproduce poorly. The replacement of native birds by introduced generalists may be contributing to dry forest decline through modification of seed dispersal patterns. To document seed dispersal by introduced birds, we conducted foraging observations on fleshy-fruited trees and measured seed rain under trees and in adjacent open areas for 1 year in a dry forest dominated by native trees. Although trees covered only 15.2 percent of the study area, 96.9 percent of the bird-dispersed seeds were deposited beneath them. The Japanese white-eye (Zosterops japonicus) was the principal dispersal agent. Among bird-dispersed seeds, those of the invasive tree Bocconia frutescens accounted for 75 percent of all seeds collected beneath trees (14.8 seeds/m2/yr) and the invasive shrub Lantana camara accounted for 17 percent. Although nearly 60 percent of the reserve's native woody species possess fleshy fruits, introduced birds rarely disperse their seeds. Native trees accounted for <8 percent of all bird-dispersed seeds and are consequently experiencing dispersal failure by falling directly under parent trees. Smaller-seeded non-native plants, in contrast, may be benefiting from dispersal by introduced birds. Current dispersal patterns suggest that these readily disseminated non-native plants may eventually replace the remaining native flora. [source]


    Frugivory and Seed Dispersal by the Lowland Tapir Tapirus terrestris in the Peruvian Amazon

    BIOTROPICA, Issue 2 2010
    Mathias W. Tobler
    ABSTRACT The lowland tapir Tapirus terrestris is the largest herbivore in the Neotropics and feeds on a large quantity of fruits, often ingesting the seeds and defecating them intact. Seed dispersal by the lowland tapir in the southwestern Amazon was studied by examining seeds from 135 dung samples collected between 2005 and 2007. Seeds of a total of 122 plant species were identified, representing 68 genera and 33 families. The species accumulation curve showed that more species can be expected with further sampling. Many species (45%) were only encountered once, and only 10 percent of all species were found in >10 samples, indicating that the lowland tapir is an opportunistic forager. Seed diversity showed a clear seasonal pattern and was highly correlated with fruit availability. Seed diameter ranged from <1 to 25 mm with 81 percent <10 mm diam. The size distribution of seeds found in lowland tapir dung generally followed that of seeds found in the forest, but had a lower proportion of seeds in the smallest size class (<2.5 mm) and a larger proportion found in the largest size class (20,25 mm). The diversity of seeds encountered in dung of the lowland tapir in this study was much higher than in previous studies. We conclude that the lowland tapir is a potential disperser for a large number of plant species, including many that previously have been thought to be dispersed only by large primates. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. [source]


    Spatial Patterns of Seed Dispersal by White-Faced Capuchins in Costa Rica: Evaluating Distant-Dependent Seed Mortality

    BIOTROPICA, Issue 2 2010
    Kim Valenta
    ABSTRACT Spatial patterns of seed dispersal are the focus of numerous theoretical examinations of endozoochory. Here, we examine the spatial pattern of seed dispersal by white-faced capuchin monkeys Cebus capucinus in Santa Rosa National Park, Costa Rica, and the neighborhood characteristics and distance variables most closely associated with seed survival and germination, and seedling survival and growth in various locations. Overall, distance to the nearest fruiting conspecific tree has the most positive, consistent effect on growth and survival variables, which supports a variation of the Janzen,Connell seed escape hypothesis. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]


    Seed Dispersal of the Palm Syagrus romanzoffiana by Tapirs in the Semi-deciduous Atlantic Forest of Argentina

    BIOTROPICA, Issue 4 2009
    Mariano I. Giombini
    ABSTRACT Vertebrates play a fundamental role in the dispersal of Neotropical trees, generating different seed shadows according to their physical and behavioral features. Tapirs are capable of consuming great quantities of large fruits, and they defecate seeds far from parent trees. For instance, intact seeds of the palm Syagrus romanzoffiana have been found in tapir dung piles in the Atlantic Forest of southeastern Brazil, suggesting that tapirs effectively disperse this species. However, recruitment was not examined therein. We studied tapir endozoochory of large and medium seeds in the semi-deciduous Atlantic Forest of Argentina by examining dung piles found within Iguazu National Park. We recorded dung-pile positions to evaluate the spatial distribution. We also counted the number of juveniles in 2 × 2 m quadrats placed on old dung piles in latrines, beneath adults and in random sites to estimate recruitment levels. Syagrus romanzoffiana seeds were present in 98 percent of dung piles, averaging >200 seeds/dung pile, indicating that this species constitutes the main fruit component in the tapir's diet. Dung piles showed a clumped deposition pattern reflecting the use of latrines. Juvenile recruitment in latrines was 21 times higher than that of under-adult sites and 500 times greater than in random sites, and correlated with the frequency of use of the areas. We concluded that the lowland tapir is a major disperser of S. romanzoffiana. Given that this palm can be considered a keystone species, a disruption of this interaction might affect the entire community of frugivores in the long term. [source]


    Seed Dispersal by Birds and Bats in Lowland Philippine Forest Successional Area

    BIOTROPICA, Issue 4 2009
    Regielene S. Gonzales
    ABSTRACT In the tropical forests of SE Asia, only a few studies have dealt with the role animal dispersal plays in early forest succession and rehabilitation, and a comparison of bird and bat dispersal is even rarer. We investigated seed dispersal by birds and bats in a successional area in the lowland dipterocarp forest of the Subic Watershed Forest Reserve (SWFR) in Luzon Island, Philippines. Using pairs of day and night traps, we collected seeds during 3 mo of wet season and 3 mo of dry season in a 1.2-ha study site. Bird-dispersed seeds predominated over those dispersed by bats in terms of both seed abundance and number of seed species. The most abundant endozoochorous seed species were significantly biased toward either bird or bat dispersal. Birds and bats appeared to compete more strongly for fruit resources during the dry season than during the wet season, and bats responded more to changes in the seasons than birds did. GLM analyses showed that the factor that had the strongest influence on overall seed distribution was the number of fleshy-fruited trees surrounding the traps, and that the distribution pattern of day-dispersed seeds was affected by more physical factors (number of trees, size of trees, presence of fleshy-fruited and conspecific trees) in the study site than the pattern of night-dispersed seeds were. Given that birds are the more important dispersers in the study site, restoration efforts in SWFR might benefit by focusing on attracting these dispersers into its degraded habitats. [source]


    Vertebrate Fruit Removal and Ant Seed Dispersal in the Neotropical Ginger Renealmia alpinia (Zingiberaceae),

    BIOTROPICA, Issue 2 2009
    Carlos García-Robledo
    ABSTRACT Plants frequently display fruit characteristics that support multiple seed-dispersal syndromes. These ambiguous characteristics may reflect the fact that seed dispersal is usually a complex process involving multiple dispersers. This is the case for the Neotropical ginger Renealmia alpinia (Zingiberaceae). It was originally suggested that the aromatic fruits of R. alpinia located at the base of the plant are adapted for terrestrial mammal seed dispersal. However, the dark-purple coloration of the fruits and bright orange aril surrounding the seeds suggest that birds may play a role in R. alpinia seed dispersal. At La Selva Biological Station, Costa Rica, we used camera traps to record vertebrate visits to infructescences of R. alpinia. Most visitors were toucans and aracaris (Ramphastidae). However fruits were also removed by terrestrial mammals (coatis and armadillos). In addition to vertebrate fruit removal, some of the fruits dehisce and the seeds that fall on the ground are dispersed by ants. Fruitfall traps showed that 77 percent of fruits are removed by vertebrates. However, 15 percent of fruits fall to the base of parent plants to be potentially dispersed by ants. Experiments using a laboratory ant colony showed that ants are effective seed dispersers of R. alpinia. Ant seed manipulation increased germination success and reduced time to germination. In conclusion, primary seed dispersal in the Neotropical ginger R. alpinia is mostly performed by birds, additionally ants are effective dispersers at short distances. Seed dispersal in R. alpinia is a complex process involving a diverse array of dispersal agents. RESUMEN Los frutos de algunas plantas presentan características que se ajustan a más de un síndrome de dispersión. Es posible que estas características ambiguas reflejen el hecho de que la dispersión de semillas es usualmente un proceso complejo que involucra múltiples organismos dispersores. Ese es el caso de la Zingiberaceae Neotropical Renealmia alpinia. Originalmente se sugirió que los frutos aromáticos y la posición basal de las infrutescencias de R. alpinia son adaptaciones para la dispersión por mamíferos terrestres. Sin embargo, el color morado oscuro del exocarpo y el color anaranjado de los arilos en los frutos maduros sugieren que las aves pueden jugar un papel importante en la dispersión de semillas de R. alpinia. En la estación Biológica La Selva, Costa Rica, usamos cámaras trampa para registrar las visitas por invertebrados a las infrutescencias de R. alpinia. La mayoría de las visitas fueron por tucanes y arasaríes (Ramphastidae). La dispersión de semillas en R. alpinia puede ser aún más compleja pues parte de los frutos maduros liberan semillas en la base de la planta, las cuales son dispersadas por hormigas. Trampas de frutos registraron 77% de los frutos removidos por vertebrados. Sin embargo las semillas de 15% de los frutos cayeron en el suelo para ser potencialmente dispersadas por hormigas. Experimentos en laboratorio demostraron que las hormigas son dispersores efectivos de R. alpinia. Semillas manipuladas por hormigas germinaron en mayor proporción y presentaron una reducción en el tiempo de germinación. En conclusión, los frutos de R. alpinia son principalmente dispersados por aves. Adicionalmente, las hormigas son eficaces dispersoras de semillas a cortas distancias. La dispersión de semillas en R. alpinia es un proceso complejo que involucra un diverso gremio de agentes dispersores. [source]


    Seed Dispersal and Ingestion of Insect-Infested Seeds by Black Howler Monkeys in Flooded Forests of the Parana River, Argentina

    BIOTROPICA, Issue 4 2008
    Susana Patricia Bravo
    ABSTRACT All howler monkey species (Alouatta spp.) have a folivorous,frugivorous diet. Howler monkeys are reported to be seed dispersers in several areas, including black howlers (Alouatta caraya), which are important seed dispersers in northern Argentinean forests. The goal of this work was to study the three-way interaction between insects, seeds, and black howlers, and assess the functional significance of this tri-trophic interaction for seed dispersal. I determined through direct observation that fruits of species with a high proportion of insect infestation were important components of howler monkey diet. Ocotea diospyrifolia seeds from fresh faeces of black howlers contained dead larvae, but seeds were still able to germinate. Seeds in which larvae had reached an advanced stage of development did not germinate. Larvae of infested Eugenia punicifolia fruits were killed by digestion when they occurred in the pulp early in the fruiting season, but were dispersed alive with seeds later in the season. Banara arguta fruits contained both healthy and infested seeds; infested seeds were destroyed during digestion, while healthy seeds were dispersed. Black howlers' ingestion of infested fruits could result in the: (1) killing of larvae and dispersion of healthy seeds; (2) spread of larvae; or (3) destruction of infested seeds. This will depend on the relationship between the time at which fruit is consumed by black howlers, the time at which insect infestation occurs, and also probably on the hardness of the seed coat and the seed,insect size ratio. RESUMEN Todas las especies de monos aulladores (Alouatta spp.), poseen dietas folívoro-frugívoras. Los monos aulladores han sido reportados en varias ocasiones como dispersores de semillas, incluído Alouatta caraya, el cual es un importante dispersor de semillas en las selvas del norte de Argentina. El objetivo de este trabajo fue estudiar la interacción triple insectos,semillas,Alouatta caraya y determinar su significado funcional para el proceso de dispersión de semillas. Se determinó por observación directa que el consumo de frutas de las especies que poseían una alta infestación por insectos representaba una alta proporción de la dieta. Las semillas de Ocotea diospyrifolia colectadas de heces frescas de A. caraya contenían larvas muertas y su capacidad germinativa intacta. Las semillas en las cuales las larvas habían alcanzado un avanzado estado de desarrollo ya no podían germinar. Al principio de la estación de fructificación las larvas que infestaban las frutas de Eugenia punicifolia se encontraban en la pulpa y morían al ser ingeridas por A. caraya, pero cuando, avanzada la fructificación, las larvas se movían hacia las semillas, eran dispersadas vivas dentro de las mismas. Las frutas de Banara arguta contenían tanto semillas infestadas como sanas; las infestadas fueron destruidas por la digestión mientras que las sanas eran dispersadas. La ingestión de frutas infestadas por parte de A. caraya puede llevar a: (1) la muerte de las larvas y la dispersión de semillas sanas, (2) la dispersión de larvas o (3) la destrucción de las semillas infestadas. Esto depende de la relación entre el tiempo en que es ingerida la fruta por A. caraya y el tiempo en que se produjo la infestación, probablemente también sea importante la dureza de la cubierta de la semilla y la relación entre el tamaño de la semilla y el de la larva. [source]


    Ruminant-mediated Seed Dispersal of an Economically Valuable Tree in Indian Dry Forests,

    BIOTROPICA, Issue 5 2006
    Soumya Prasad
    ABSTRACT Ruminant-mediated seed dispersal, an understudied process in tropical forests, was examined via Phyllanthus emblica,Axis axis interaction. A captive Axis deer regurgitated intact P. emblica seeds after retaining them in the rumen for 7,27 h. At Rajaji National Park, a considerable fraction (22%) of deer-regurgitated P. emblica seeds germinated, although lower than unconsumed seeds (72%). The size and strength of seeds like P. emblica might ensure that ruminants regurgitate them intact instead of defecating them. [source]


    Seed Dispersal of a High Quality Fruit by Specialized Frugivores: High Quality Dispersal?,

    BIOTROPICA, Issue 2 2000
    Daniel G. Wenny
    ABSTRACT Dispersal quality, as estimated by the cumulative effects of dispersal, germination, seed predation, and seedling survival, was examined for Beilschmiedia pendula (Lauraceae) in Monteverde, Costa Rica. I determined the pattern of dispersal by finding seeds deposited by birds, protected the seeds from seed predators with cages to assess germination and seedling survival, and examined seed predation rates with marked seeds. Seed predation, germination, and seedling survival were compared between seeds naturally dispersed by birds and seeds placed at randomly located sites. Approximately 70 percent of seeds dispersed by birds (N= 244) were deposited <10 m from crown edges of fruiting B. pendula trees, although some seeds were dispersed at least 70 m away. Larger seeds were more likely to be dispersed under or close to the parent trees, and larger seeds produced larger seedlings. Seed size was not correlated directly with seedling survival, but larger seedlings at three months were most likely to survive one year. Seed predation by mammals and insects and seedling mortality due to fungal pathogens were concentrated beneath the crowns of parent trees. Seedlings and saplings were more abundant beneath fruiting B. pendula trees, but individuals farther away were taller on average. Thus, dispersal is beneficial for B. pendula, but such benefits appear most pronounced at a small spatial scale; seeds dispersed >30 m from the crown edges actually had a lower probability of survival than those dispersed 10,20 m. Only 10 percent of B. pendula. seeds received high-quality dispersal in terms of landing in the zone with the highest per seed probability of seedling survival 10,20 m from parental crowns. RESUMEN La calidad de dispersión, estimado del efecto acurnulativo de dispersión, germinación, predación de semillas, y sobrevivencia de plantulas fue examinada por Beikcbmiedia pendula (Lauracea) en Monteverde, Costa Rica. Determinté el partén de disperstón, encontrando semillas defecadas o regurgitadas por aves, protegi semillas de predatores con jaulas para determinar germinación y sobrevivencia de plantulas, y examiné la proporción de predación de semillas con semillas marcadas. Predación de semillas, germinación y sobrevivencia de plantulas fueron comparadas con semillas dispersadas naturalmente por aves y con semillas localizadas en lugares al azar. Aproximadamente 70 porcento de las semillas dispersadas por aves (N = 244) fueron depositadas cerca de 10 mdel horde de la corona de árboles en fruto de B. pendula, aunque algunas semillas fueron dispersadas hasta 70 m mas lejos. Semillas grandes tuvieron la tendencia de ser dispersadas debajo o cerca del Brbol parental, y semillas grandes produjeron plantulas grandes. El tamaño de la semilla no estaba correlacionada directamente con sobrevivencia de plantulas, pero plantulas grandes a 3 mesa tuvieron la tendencia de sobrevivir. Predación de semillas por los roedores y insectos, y mortalitad de plantulas por hongos patogtnicos fueron lo mas comun debajo de la corona de los árboles parentales. Plantulas y arbolillos fueron mós abundantes debajo de drboles en fruto de B. pendula, pero individuos distantes fueron en promedio más altos. Dispersión es favorable para B. pendula, pero estos beneficios aparentan ser más ptonunciados a una escala espacial menot; semillas dispersadas más de 30 m del horde de la corona en realidad tienen una probabilidad menor de sobrevivencia que las que son dispersadas entre 10,20 m. Solamente 10 porcento de las seniillas de B. pendula recibieron despersión de calidad alta en terminos de aterrizar en una zona con la más alta probabilidad de sobrevivencia de plantulas entre 10,20 m de la corona parental. [source]


    Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos

    DIVERSITY AND DISTRIBUTIONS, Issue 1 2008
    María Calviño-Cancela
    ABSTRACT Topographical heterogeneity can create a mosaic of substrate types leading to the formation of isolated plant populations. Seed dispersal then becomes crucial for the colonization of such suitable but remote substrate types. We surveyed the distribution of seven elaiosome-bearing species (myrmecochores) over 5 km2 of natural heathland in southwestern Australia. Ants are the standard means of dispersal of these species, which provide limited dispersal (usually of a few metres). Six species were associated with particular substrate types (dune or swale) and all occurred as discrete populations, on average 270,500 m apart, with closest dune edges 280 m apart. We evaluated the possible roles of emus and kangaroos as alternative agents of long-distance seed dispersal between substrate types. Their droppings contained viable seeds of three of the target species, as well as other myrmecochores, and were evenly distributed over the substrate types. While migration of these plant species between preferred substrate types seems unlikely when considering only their standard dispersal agents (ants), it is highly likely in the presence of emus (in particular) and kangaroos that act as non-standard dispersers. This may have important consequences for plant species conservation by increasing habitat connectivity and favouring regional persistence. [source]


    Spatiotemporal patterns of seed dispersal in a wind-dispersed Mediterranean tree (Acer opalus subsp. granatense): implications for regeneration

    ECOGRAPHY, Issue 1 2007
    Lorena Gómez-Aparicio
    Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed-limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right-skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance-limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter-annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions. [source]


    Welche Bedeutung hat die sexuelle Reproduktion für den Erfolg der Art Calamagrostis epigejos (L.) Roth?

    FEDDES REPERTORIUM, Issue 3-4 2003
    A. Grüttner Dr.
    Als Quellen der Variabilität im Potential der sexuellen Reproduktion fanden sich Unterschiede in der Keimungsgeschwindigkeit (entspelzte Karyopsen keimten rascher und synchroner), bei den Keimraten und vor allem bei der Zahl keimfähiger Diasporen pro Rispe. Von den anderen abweichend zeigten kleine isolierte Bestände geringere Keimraten und brachten , wohl bedingt durch Selbstinkompatibilität , kaum keimfähige Diasporen hervor. Bei gezielter Suche fanden sich Keimlinge auf offenen, zumindest leicht tonhaltigen Rohböden. Das Wachstum der Keimlinge stagnierte und keiner von über 6000 überlebte bis zum nächsten Jahr. Da Bewässerung die Entwicklung auf dem selben Substrat sehr förderte, war offenbar Wassermangel für das geringe Wachstum ausschlaggebend. Die erfolgreiche generative Etablierung ist also auf den Zufall günstiger Witterungsphasen oder Standorte angewiesen. Auch im Frühjahr waren noch keimfähige Diasporen in aufrechten Rispen nachweisbar, sodass sich der Diasporenfall mehr oder weniger über das gesamte Jahr erstreckt. Im Zusammenspiel mit dem Fehlen von Dormanz ermöglicht das die Nutzung nicht vorhersagbarer günstiger Witterungsphasen. Bei einem Kulturversuch kamen einzelne Individuen auch mit schwierigen Substraten gut zurecht, auf denen die Mehrzahl kümmerte. Danach ergibt sich die standörtliche Breite der Art C.,epigejos als Summe sehr unterschiedlicher Reaktionsnormen der Individuen. Die angeführten Befunde unterstreichen insgesamt die Bedeutung der sexuellen Reproduktion und der genetischen Diversität für den Erfolg der Art. Is sexual reproduction important to the success of Calamagrostis epigejos (L.) Roth? Calamagrostis epigejos is very common in Central Europe and occupies an extraordinary wide range of habitats. As up to now nearly no reports exist on spontaneous seedling emergence, we aimed to investigate several aspects of sexual reproduction, thereby refering to contrasting habitat types. Components in the variability of the potential of sexual reproduction were differences in germination speed and rates and, above all, number of germinable seeds per panicle. Unlike the others, small isolated stands produced very low numbers of germinable seeds, probably caused by selfincompatibility. Our search for seedlings was successful at several sites , all distinguished by raw soil, a certain clay content, and little cover of vegetation and plant litter. The seedlings grew very slowly and none of more than 6000 survived the first year. Additional water enabling much better growth indicates the necessity of favorable weather or favorable habitats (with constant water supply) for successful seedling establishment. Seed dispersal nearly all around the year, combined with the lack of dormancy, allows to make use of the unpredictable opportunities of suitable weather periods. A growth experiment on different substrates demonstrated: the more extreme the conditions, the more differentiated the amount of biomass achieved by each of 20 genets. Some genets grew well even on substrates where most others stagnated. This outcome suggests the wide range of habitats covered by C. epigejos to be the result of the genetic diversity, which in turn is maintained by sexual reproduction and avoidance of inbreeding. [source]


    Shrub encroachment in Argentinean savannas

    JOURNAL OF VEGETATION SCIENCE, Issue 2 2003
    A.C. Cabral
    Zuloaga et al. (1994, 1996a, b). Some native names were included using quotation marks Abstract. In the Wet Chaco region of Argentina, increasing shrub encroachment in savannas over the last few decades has led to important changes in the structure and functioning of the landscape. Some sectors of this territory are characterized by the appearance of circular clusters of woody patches, dispersed throughout the grassland matrix. The increasing size of these patches leads to a gradual change from grassland to dense shrubland. We studied these circular woody patches in the eastern region of the Argentine province of Formosa and characterized the variation in terms of floristic composition, diversity and predominant seed dispersal mode in different size patches. We observed an increase in species richness, diversity and compositional heterogeneity among patches with increasing patch size. Seed dispersal by animals, especially birds, is an important factor in the expansion of these woody vegetation patches within the grassland matrix. [source]


    Seed dispersal in a polder after partial tidal restoration: Implications for salt-marsh restoration

    APPLIED VEGETATION SCIENCE, Issue 1 2008
    Armel Dausse
    Abstract Question: The vegetation in a polder after partial tidal restoration does not resemble the targeted salt-marsh vegetation. Is this difference in vegetation due to lack of dispersal or unsuitable abiotic conditions? What could be done for a better restoration of the site? Location: Northwestern France. Methods: Seeds were trapped at the single inlet of the polder with a 200- , m mesh net to estimate inputs of seeds from the bay. In parallel, seed dispersal was studied in the polder by placing Astroturf® seed traps on the surface of the sediment at three different elevations in three distinct areas. Abiotic conditions such as flooding frequency, water table level and soil salinity were monitored. Results: All but one species from the adjacent salt marshes were trapped at the inlet. Not all of these species were on the seed traps inside the polder. Seed dispersal was not homogeneous in the polder and seed trap content mostly discriminated in function of their elevation. Salinity and water logging at the bottom of the slope were very high compared to tolerance of most halophytes but decreased rapidly higher up the slope. Conclusions: The development of salt marsh target species is highly restricted by limited hydrochory inside the polder but also by unfavourable soil conditions induced by the actual hydrological regime. Halophytes are excluded at the bottom of the slope by abiotic conditions and out-competed by sub-halophytes higher up. In order to restore salt marsh vegetation inside the polder, a larger opening should be induced in order to increase the flooded surface, and diminish water logging and flooding frequencies. [source]


    Seed dispersal in fens

    APPLIED VEGETATION SCIENCE, Issue 2 2006
    Beth Middleton
    Anon. (2004) Abstract Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. [source]


    Linking frugivore activity to early recruitment of a bird dispersed tree, Eugenia umbelliflora (Myrtaceae) in the Atlantic rainforest

    AUSTRAL ECOLOGY, Issue 3 2009
    MARINA CORRÊA CÔRTES
    Abstract Seed dispersal by animals is a complex process involving several distinct stages: fruit removal by frugivores, seed delivery in different microhabitats, seed germination, seedling establishment, and adult recruitment. Nevertheless, studies conducted until now have provided scarce information concerning the sequence of stages in a plant's life cycle in its entirety. The main objective of this study was to evaluate the immediate consequences of frugivore activity for Eugenia umbelliflora (Myrtaceae) early recruitment by measuring the relative importance of each fruit-eating bird species on the establishment of new seedlings in scrub and low restinga vegetation in the Atlantic rainforest, Brazil. We conducted focal tree observations on E. umbelliflora trees recording birds' feeding behaviour and post-feeding movements. We also recorded the fate of dispersed seeds in scrub and low restinga vegetation. We recorded 17 bird species interacting with fruits in 55 h of observation. Only 30% of the handled fruits were successfully removed. From 108 post flight movements of exit from the fruiting trees, 30.6% were to scrub and 69.4% to low restinga forest. Proportion of seed germination was higher in low restinga than in the scrub vegetation. Incorporating the probabilities of seeds' removal, deposition, and germination in both sites, we found that the relative importance of each frugivorous bird as seed dispersers varies largely among species. Turdus amaurochalinus and Turdus rufiventris were the best dispersers, together representing almost 12% probability of seed germination following removal. Our results show the importance of assessing the overall consequence of seed dispersal within the framework of disperser effectiveness, providing a more comprehensive and realistic evaluation of the relative importance of different seed dispersers on plant population dynamics. [source]


    Frugivory and Seed Dispersal by the Lowland Tapir Tapirus terrestris in the Peruvian Amazon

    BIOTROPICA, Issue 2 2010
    Mathias W. Tobler
    ABSTRACT The lowland tapir Tapirus terrestris is the largest herbivore in the Neotropics and feeds on a large quantity of fruits, often ingesting the seeds and defecating them intact. Seed dispersal by the lowland tapir in the southwestern Amazon was studied by examining seeds from 135 dung samples collected between 2005 and 2007. Seeds of a total of 122 plant species were identified, representing 68 genera and 33 families. The species accumulation curve showed that more species can be expected with further sampling. Many species (45%) were only encountered once, and only 10 percent of all species were found in >10 samples, indicating that the lowland tapir is an opportunistic forager. Seed diversity showed a clear seasonal pattern and was highly correlated with fruit availability. Seed diameter ranged from <1 to 25 mm with 81 percent <10 mm diam. The size distribution of seeds found in lowland tapir dung generally followed that of seeds found in the forest, but had a lower proportion of seeds in the smallest size class (<2.5 mm) and a larger proportion found in the largest size class (20,25 mm). The diversity of seeds encountered in dung of the lowland tapir in this study was much higher than in previous studies. We conclude that the lowland tapir is a potential disperser for a large number of plant species, including many that previously have been thought to be dispersed only by large primates. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. [source]


    Vertebrate Fruit Removal and Ant Seed Dispersal in the Neotropical Ginger Renealmia alpinia (Zingiberaceae),

    BIOTROPICA, Issue 2 2009
    Carlos García-Robledo
    ABSTRACT Plants frequently display fruit characteristics that support multiple seed-dispersal syndromes. These ambiguous characteristics may reflect the fact that seed dispersal is usually a complex process involving multiple dispersers. This is the case for the Neotropical ginger Renealmia alpinia (Zingiberaceae). It was originally suggested that the aromatic fruits of R. alpinia located at the base of the plant are adapted for terrestrial mammal seed dispersal. However, the dark-purple coloration of the fruits and bright orange aril surrounding the seeds suggest that birds may play a role in R. alpinia seed dispersal. At La Selva Biological Station, Costa Rica, we used camera traps to record vertebrate visits to infructescences of R. alpinia. Most visitors were toucans and aracaris (Ramphastidae). However fruits were also removed by terrestrial mammals (coatis and armadillos). In addition to vertebrate fruit removal, some of the fruits dehisce and the seeds that fall on the ground are dispersed by ants. Fruitfall traps showed that 77 percent of fruits are removed by vertebrates. However, 15 percent of fruits fall to the base of parent plants to be potentially dispersed by ants. Experiments using a laboratory ant colony showed that ants are effective seed dispersers of R. alpinia. Ant seed manipulation increased germination success and reduced time to germination. In conclusion, primary seed dispersal in the Neotropical ginger R. alpinia is mostly performed by birds, additionally ants are effective dispersers at short distances. Seed dispersal in R. alpinia is a complex process involving a diverse array of dispersal agents. RESUMEN Los frutos de algunas plantas presentan características que se ajustan a más de un síndrome de dispersión. Es posible que estas características ambiguas reflejen el hecho de que la dispersión de semillas es usualmente un proceso complejo que involucra múltiples organismos dispersores. Ese es el caso de la Zingiberaceae Neotropical Renealmia alpinia. Originalmente se sugirió que los frutos aromáticos y la posición basal de las infrutescencias de R. alpinia son adaptaciones para la dispersión por mamíferos terrestres. Sin embargo, el color morado oscuro del exocarpo y el color anaranjado de los arilos en los frutos maduros sugieren que las aves pueden jugar un papel importante en la dispersión de semillas de R. alpinia. En la estación Biológica La Selva, Costa Rica, usamos cámaras trampa para registrar las visitas por invertebrados a las infrutescencias de R. alpinia. La mayoría de las visitas fueron por tucanes y arasaríes (Ramphastidae). La dispersión de semillas en R. alpinia puede ser aún más compleja pues parte de los frutos maduros liberan semillas en la base de la planta, las cuales son dispersadas por hormigas. Trampas de frutos registraron 77% de los frutos removidos por vertebrados. Sin embargo las semillas de 15% de los frutos cayeron en el suelo para ser potencialmente dispersadas por hormigas. Experimentos en laboratorio demostraron que las hormigas son dispersores efectivos de R. alpinia. Semillas manipuladas por hormigas germinaron en mayor proporción y presentaron una reducción en el tiempo de germinación. En conclusión, los frutos de R. alpinia son principalmente dispersados por aves. Adicionalmente, las hormigas son eficaces dispersoras de semillas a cortas distancias. La dispersión de semillas en R. alpinia es un proceso complejo que involucra un diverso gremio de agentes dispersores. [source]


    Modelling the establishment and spread of autotetraploid plants in a spatially heterogeneous environment

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2004
    B.-H. Li
    Abstract The establishment and spread of autotetraploids from an original diploid population in a heterogeneous environment were studied using a stochastic simulation model. Specifically, we investigated the effects of heterogeneous habitats and nonrandom pollen/seed dispersal on the critical value (,) of unreduced 2n gamete production necessary for the establishment of autotetraploids as predicted by deterministic models. Introduction of a heterogeneous environment with random pollen/seed dispersal had little effect on the , value. In contrast, incorporating nonrandom pollen/seed dispersal into a homogeneous environment considerably reduced the , value. Incorporating both heterogeneous habitats and nonrandom pollen/seed dispersal may lead either to an increase or to a decrease in the , value compared to that with random dispersal, indicating that the two factors interact in a complex way. [source]


    Genetic structure of the endangered perennial plant Eryngium alpinum (Apiaceae) in an alpine valley

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2008
    MYRIAM GAUDEUL
    We investigated the genetic structure of Eryngium alpinum (Apiaceae) in an Alpine valley where the plant occurs in patches of various sizes. In a conservation perspective, our goal was to determine whether the valley consists of one or several genetic units. Habitat fragmentation and previous observations of restricted pollen/seed dispersal suggested pronounced genetic structure, but gene dispersal often follows a leptokurtic distribution, which may lead to weak genetic structure. We used nine microsatellite loci and two nested sampling designs (50 × 50 m grid throughout the valley and 2 × 2 m grid in two 50 × 10 m quadrats). Within the overall valley, F -statistics and Bayesian approaches indicated high genetic homogeneity. This result might be explained by: (1) underestimation of long-distance pollen/seed dispersal by in situ experiments and (2) too recent fragmentation events to build up genetic structure. Spatial autocorrelation revealed isolation by distance on the overall valley but this pattern was much more pronounced in the 50 × 10 m quadrats sampled with a 2-m mesh. This was probably associated with limited primary seed dispersal, leading to the spatial clustering of half-sibs around maternal plants. We emphasize the interest of nested sampling designs and of combining several statistical tools. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 93, 667,677. [source]


    Role of Corridors in Plant Dispersal: an Example with the Endangered Ranunculus nodif lorus

    CONSERVATION BIOLOGY, Issue 2 2003
    Florian Kirchner
    But the few experimental studies supporting the usefulness of corridors have all concerned animal species. We investigated the role of corridors in seed dispersal, studying population genetic and demographic structure in metapopulations of the rare, pond-dwelling, autogamous plant species Ranunculus nodiflorus L. in the Fontainebleau Forest ( France ). Differentiation on three polymorphic isozyme markers was strong among local populations ( ponds ) within metapopulations ( sites ) and moderate among metapopulations. Partial Mantel tests revealed that the connection of ponds through temporarily flooded natural corridors, facilitating seed migration, had a strong negative effect on genetic differentiation between local populations and that a pond was more likely to be colonized when connected by corridors to other occupied ponds. Thus, corridors are probably a key element of landscape structure for metapopulation dynamics in R. nodiflorus. From a conservation perspective, our results suggest that corridors could increase the chance of persistence of plant species living in fragmented habitats by promoting seed dispersal between habitat patches. Resumen: La propuesta de que la migración de organismos entre parches de hábitat puede ser incrementada por corredores ha sido muy discutida en biología de la conservación. Pero los pocos estudios experimentales que apoyan la utilidad de los corredores han sido enfocados hacia especies de animales. Investigamos el papel de los corredores en la dispersión de semillas, estudiando la genética poblacional y la estructura demográfica en metapoblaciones de la especie de planta rara, autógama, habitante de estanques Ranunculus nodiflorus L. en el bosque Fontainebleau ( Francia ). La diferenciación de tres isozimas polimórficas marcadoras fue fuerte entre las poblaciones locales ( estanques ) dentro de metapoblaciones ( sitios ) y fue moderada entre metapoblaciones. Las pruebas parciales de Mantel revelaron que la conexión de estanques a través de corredores naturales inundados facilitando la migración de semillas, tuvo un efecto negativo fuerte en la diferenciación genética entre poblaciones locales y que un estanque fue más probable de ser colonizado cuando se conectaba por corredores con otros estanques ocupados. Por lo tanto, los corredores probablemente son un factor clave de la estructura del paisaje para dinámicas metapoblacionales en R. nodiflorus. Desde una perspectiva de conservación, nuestros resultados sugieren que los corredores podrían incrementar la probabilidad de persistencia de especies de plantas que viven en hábitats fragmentados al promover la dispersión de semillas entre parches de hábitats. [source]


    Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos

    DIVERSITY AND DISTRIBUTIONS, Issue 1 2008
    María Calviño-Cancela
    ABSTRACT Topographical heterogeneity can create a mosaic of substrate types leading to the formation of isolated plant populations. Seed dispersal then becomes crucial for the colonization of such suitable but remote substrate types. We surveyed the distribution of seven elaiosome-bearing species (myrmecochores) over 5 km2 of natural heathland in southwestern Australia. Ants are the standard means of dispersal of these species, which provide limited dispersal (usually of a few metres). Six species were associated with particular substrate types (dune or swale) and all occurred as discrete populations, on average 270,500 m apart, with closest dune edges 280 m apart. We evaluated the possible roles of emus and kangaroos as alternative agents of long-distance seed dispersal between substrate types. Their droppings contained viable seeds of three of the target species, as well as other myrmecochores, and were evenly distributed over the substrate types. While migration of these plant species between preferred substrate types seems unlikely when considering only their standard dispersal agents (ants), it is highly likely in the presence of emus (in particular) and kangaroos that act as non-standard dispersers. This may have important consequences for plant species conservation by increasing habitat connectivity and favouring regional persistence. [source]


    Do cities export biodiversity?

    DIVERSITY AND DISTRIBUTIONS, Issue 1 2008
    Traffic as dispersal vector across urban, rural gradients
    ABSTRACT Urban areas are among the land use types with the highes richness in plant species. A main feature of urban floras is the high proportion of non-native species with often divergent distribution patterns along urban,rural gradients. Urban impacts on plant species richness are usually associated with increasing human activity along rural-to-urban gradients. As an important stimulus of urban plant diversity, human-mediated seed dispersal may drive the process of increasing the similarity between urban and rural floras by moving species across urban,rural gradients. We used long motorway tunnels as sampling sites for propagules that are released by vehicles to test for the impact of traffic on seed dispersal along an urban,rural gradient. Opposite lanes of the tunnels are separated by solid walls, allowing us to differentiate seed deposition associated with traffic into vs. out of the city. Both the magnitude of seed deposition and the species richness in seed samples from two motorway tunnels were higher in lanes leading out of the city, indicating an ,export' of urban biodiversity by traffic. As proportions of seeds of non-native species were also higher in the outbound lanes, traffic may foster invasion processes starting from cities to the surrounding landscapes. Indicator species analysis revealed that only a few species were confined to samples from lanes leading into the city, while mostly species of urban habitats were significantly associated with samples from the outbound lanes. The findings demonstrate that dispersal by traffic reflects different seed sources that are associated with different traffic directions, and traffic may thus exchange propagules along the urban,rural gradient. [source]


    Long-distance biological transport processes through the air: can nature's complexity be unfolded in silico?

    DIVERSITY AND DISTRIBUTIONS, Issue 2 2005
    Ran Nathan
    ABSTRACT Understanding and predicting complex biological systems are best accomplished through the synthesis and integration of information across relevant spatial, temporal and thematic scales. We propose that mechanistic transport models, which integrate atmospheric turbulence with information on relevant biological attributes, can effectively incorporate key elements of aerial transport processes at scales ranging from a few centimetres and fractions of seconds, to hundreds of kilometres and decades. This capability of mechanistic models is critically important for modelling the flow of organisms through the atmosphere because diverse aerial transport processes , such as pathogen spread, seed dispersal, spider ballooning and bird migration , are sensitive to the details of small-scale short-term turbulent deviations from the mean airflow. At the same time, all these processes are strongly influenced by the typical larger-scale variation in landscape structure, through its effects on wind flow patterns. We therefore highlight the useful coupling of detailed atmospheric models such as large eddy simulations (LES), which can provide a high-resolution description of turbulent airflow, with regional atmospheric models, which can capture the effects of landscape heterogeneity at various scales. Further progress in computational fluid dynamics (CFD) will enable rigorous exploration of transport processes in heterogeneous landscapes. [source]


    Conifers as invasive aliens: a global survey and predictive framework

    DIVERSITY AND DISTRIBUTIONS, Issue 5-6 2004
    David M. Richardson
    ABSTRACT We summarize information on naturalized and invasive conifers (class Pinopsida) worldwide (data from 40 countries, some with remote states/territories), and contrast these findings with patterns for other gymnosperms (classes Cycadopsida, Gnetopsida and Ginkgoopsida) and for woody angiosperms. Eighty conifer taxa (79 species and one hybrid; 13% of species) are known to be naturalized, and 36 species (6%) are ,invasive'. This categorization is based on objective and conservative criteria relating to consistency of reproduction, distance of spread from founders, and degree of reliance on propagules from the founder population for persistence in areas well outside the natural range of species. Twenty-eight of the known invasive conifers belong to one family (Pinaceae) and 21 of these are in one genus (Pinus). The Cupressaceae (including Taxodiaceae) has six known invasive species (4%) in four genera, but the other four conifer families have none. There are also no known invasive species in classes Cycadopsida, Gnetopsida or Ginkgoopsida. No angiosperm family comprising predominantly trees and shrubs has proportionally as many invasive species as the Pinaceae. Besides the marked taxonomic bias in favour of Pinaceae, and Pinus in particular, invasiveness in conifers is associated with a syndrome of life-history traits: small seed mass (< 50 mg), short juvenile period (< 10 year), and short intervals between large seed crops. Cryptomeria japonica, Larix decidua, Picea sitchensis, Pinus contorta, Pinus strobus, and Pseudotsuga menziesii exemplify this syndrome. Many rare and endangered conifer species exhibit opposite characters. These results are consistent with earlier predictions made using a discriminant function derived from attributes of invasive and noninvasive Pinus species. Informative exceptions are species with small seeds (< 4 mg, e.g. Chamaecyparis spp., Pinus banksiana, Tsuga spp. , mostly limited to wet/mineral substrates) or otherwise ,non-invasive' characters (e.g. large seeds, fleshy fruits, e.g. Araucaria araucana, Pinus pinea, Taxus baccata that are dependent on vertebrates for seed dispersal). Most conifers do not require coevolved mutualists for pollination and seed dispersal. Also, many species can persist in small populations but have the genetic and reproductive capacity to colonize and increase population size rapidly. The underlying mechanisms mediating conifer invasions are thus easier to discern than is the case for most angiosperms. Further information is needed to determine the extent to which propagule pressure (widespread dissemination, abundant plantings, long history of cultivation) can compensate for low ,inherent invasiveness'. [source]


    Fragmentation, habitat composition and the dispersal/predation balance in interactions between the Mediterranean myrtle and avian frugivores

    ECOGRAPHY, Issue 1 2010
    Juan P. González-Varo
    Human-induced fragmentation and disturbance of natural habitats can shift abundance and composition of frugivore assemblages, which may alter patterns of frugivory and seed dispersal. However, despite their relevance to the functioning of ecosystems, plant-frugivore interactions in fragmented areas have been to date poorly studied. I investigated spatial variation of avian frugivore assemblages and fruit removal by dispersers and predators from Mediterranean myrtle shrubs (Myrtus communis) in relation to the degree of fragmentation and habitat features of nine woodland patches (72 plants). The study was conducted within the chronically fragmented landscape of the Guadalquivir Valley (SW Spain), characterized by ~1% of woodland cover. Results showed that the abundance and composition of the disperser guild was not affected by fragmentation, habitat features or geographical location. However, individual species and groups of resident/migrant birds responded differently: whereas resident dispersers were more abundant in large patches, wintering dispersers were more abundant in fruit-rich patches. Predator abundances were similar between patches, although the guild composition shifted with fragmentation. The proportion of myrtle fruits consumed by dispersers and predators varied greatly between patches, but did not depend on bird abundances. The geographical location of patches determined the presence or absence of interactions between myrtles and seed predators (six predated and three non-predated patches), a fact that greatly influenced fruit dispersal success. Moreover, predation rates were lower (and dispersal rates higher) in large patches with fruit-poor heterospecific environments (i.e. dominated by myrtle). Predator satiation and a higher preference for heterospecific fruits by dispersers may explain these patterns. These results show that 1) the frugivore assemblage in warm Mediterranean lowlands is mostly composed of fragmentation-tolerant species that respond differently to landscape changes; and 2) that the feeding behaviour of both dispersers and predators influenced by local fruit availability may be of great importance for interpreting patterns of frugivory throughout the study area. [source]


    Spatiotemporal patterns of seed dispersal in a wind-dispersed Mediterranean tree (Acer opalus subsp. granatense): implications for regeneration

    ECOGRAPHY, Issue 1 2007
    Lorena Gómez-Aparicio
    Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed-limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right-skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance-limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter-annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions. [source]


    A multi-scale test for dispersal filters in an island plant community

    ECOGRAPHY, Issue 4 2005
    Kevin C. Burns
    Constraints on plant distributions resulting from seed limitation (i.e. dispersal filters) were evaluated on two scales of ecological organization on islands off the coast of British Columbia, Canada. First, island plant communities were separated into groups based on fruit morphology, and patterns in species diversity were compared between fruit-type groups. Second, abundance patterns in several common fleshy-fruited, woody angiosperm species were compared to species-specific patterns in seed dispersal by birds. Results from community-level analyses showed evidence for dispersal filters. Dry-fruited species were rare on islands, despite being common on the mainland. Island plant communities were instead dominated by fleshy-fruited species. Patterns in seed dispersal were consistent with differences in diversity, as birds dispersed thousands of fleshy-fruited seeds out to islands, while dry fruited species showed no evidence of mainland-island dispersal. Results from population-level analyses showed no evidence for dispersal filters. Population sizes of common fleshy-fruited species were unrelated to island isolation, as were rates of seed dispersal. Therefore, island isolation distances were not large enough to impose constraints on species' distributions resulting from seed limitation. Rates of seed dispersal were also unrelated to island area. However, several species increased in abundance with island area, indicating post-dispersal processes also help to shape species distributions. Overall results suggest that seed dispersal processes play an important role in determining the diversity and distribution of plants on islands. At the community-level, dry-fruited species were seed limited and island communities were instead dominated by fleshy-fruited species. At the population-level, common fleshy-fruited species were not seed limited and showed few differences in distribution among islands. Therefore, although evidence for dispersal filters was observed, their effects on plant distributions were scale-dependent. [source]


    Distribution and dispersal of desert mistletoe is scale-dependent, hierarchically nested

    ECOGRAPHY, Issue 2 2004
    Juliann Eve Aukema
    Spatial patterns are important to many ecological processes, and scale is a critical component of both patterns and processes. I examined the pattern and scale of the spatial distribution of infection of host plants by the desert mistletoe, Phoradendron californicum, in a landscape that spans several square kilometers. I also studied the relationship between mistletoe infection and seed dispersal. I found elevated seed rain in areas with a high prevalence of mistletoes and I found that a greater proportion of trees receive seeds than are infected, suggesting that mistletoes will be aggregated in space. Using nested analysis of variance and variograms, I found that mistletoe infections were distributed in hierarchical patches. Mistletoes were aggregated within trees and mistletoe prevalence was correlated at scales of <1500 m, and at scales >4000 m. Patterns at the largest scales were correlated with elevation: sites at higher elevations showed reduced mistletoe infection compared to those at lower elevations. I propose that at small scales, mistletoe distributions are primarily the result of aggregation of seed-dispersing birds, and that the elevational effect could reflect the recent colonization of higher elevations by the mistletoes' mesquite hosts or the limits of the mistletoes' physiological tolerance to freezing-induced cavitation. [source]