Home About us Contact | |||
Second-site Mutations (second-site + mutation)
Selected AbstractsIntegrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosisPROTEIN SCIENCE, Issue 10 2010Chi Wang Abstract The lethal genetic disease cystic fibrosis is caused predominantly by in-frame deletion of phenylalanine 508 in the cystic fibrosis transmembrane conductance regulator (CFTR). F508 is located in the first nucleotide-binding domain (NBD1) of CFTR, which functions as an ATP-gated chloride channel on the cell surface. The F508del mutation blocks CFTR export to the surface due to aberrant retention in the endoplasmic reticulum. While it was assumed that F508del interferes with NBD1 folding, biophysical studies of purified NBD1 have given conflicting results concerning the mutation's influence on domain folding and stability. We have conducted isothermal (this paper) and thermal (accompanying paper) denaturation studies of human NBD1 using a variety of biophysical techniques, including simultaneous circular dichroism, intrinsic fluorescence, and static light-scattering measurements. These studies show that, in the absence of ATP, NBD1 unfolds via two sequential conformational transitions. The first, which is strongly influenced by F508del, involves partial unfolding and leads to aggregation accompanied by an increase in tryptophan fluorescence. The second, which is not significantly influenced by F508del, involves full unfolding of NBD1. Mg-ATP binding delays the first transition, thereby offsetting the effect of F508del on domain stability. Evidence suggests that the initial partial unfolding transition is partially responsible for the poor in vitro solubility of human NBD1. Second-site mutations that increase the solubility of isolated F508del-NBD1 in vitro and suppress the trafficking defect of intact F508del-CFTR in vivo also stabilize the protein against this transition, supporting the hypothesize that it is responsible for the pathological trafficking of F508del-CFTR. [source] Human and Drosophila UDP-galactose transporters transport UDP- N -acetylgalactosamine in addition to UDP-galactoseFEBS JOURNAL, Issue 1 2002Hiroaki Segawa A putative Drosophila nucleotide sugar transporter was characterized and shown to be the Drosophila homologue of the human UDP-Gal transporter (hUGT). When the Drosophila melanogaster UDP-Gal transporter (DmUGT) was expressed in mammalian cells, the transporter protein was localized in the Golgi membranes and complemented the UDP-Gal transport deficiency of Lec8 cells but not the CMP-Sia transport deficiency of Lec2 cells. DmUGT and hUGT were expressed in Saccharomyces cerevisiae cells in functionally active forms. Using microsomal vesicles isolated from Saccharomyces cerevisiae expressing these transporters, we unexpectedly found that both hUGT and DmUGT could transport UDP-GalNAc as well as UDP-Gal. When amino-acid residues that are conserved among human, murine, fission yeast and Drosophila UGTs, but are distinct from corresponding ones conserved among CMP-Sia transporters (CSTs), were substituted by those found in CST, the mutant transporters were still active in transporting UDP-Gal. One of these mutants in which Asn47 was substituted by Ala showed aberrant intracellular distribution with concomitant destabilization of the protein product. However, this mutation was suppressed by an Ile51 to Thr second-site mutation. Both residues were localized within the first transmembrane helix, suggesting that the structure of the helix contributes to the stabilization and substrate recognition of the UGT molecule. [source] Dimer-induced signal propagation in Spo0AMOLECULAR MICROBIOLOGY, Issue 3 2004K. Muchová Summary Spo0A, the response regulator protein controlling the initiation of sporulation in Bacillus, has two distinct domains, an N-terminal phosphoacceptor (or receiver) domain and a C-terminal DNA-binding (or effector) domain. The phosphoacceptor domain mediates dimerization of Spo0A on phosphorylation. A comparison of the crystal structures of phosphorylated and unphosphorylated response regulators suggests a mechanism of activation in which structural changes originating at the phosphorylatable aspartate extend to the ,4,5,5 surface of the protein. In particular, the data show an important role in downstream signalling for a conserved aromatic residue (Phe-105 in Spo0A), the conformation of which alters upon phosphorylation. In this study, we have prepared a Phe-105 to Ala mutant to probe the contribution of this residue to Spo0A function. We have also made an alanine substitution of the neighbouring residue Tyr-104 that is absolutely conserved in the Spo0As of spore-forming Bacilli. The spo0A(Y104A) and spo0A(F105A) alleles severely impair sporulation in vivo. In vitro phosphorylation of the purified proteins by phosphoramidate is unaffected, but dimerization and DNA binding are abolished by the mutations. We have identified intragenic suppressor mutations of spo0A(F105A) and shown that these second-site mutations in the purified proteins restore phosphorylation-dependent dimer formation. Our data support a model in which dimerization and signal transduction between the two domains of Spo0A are mediated principally by the ,4,5,5 signalling surface in the receiver domain. [source] For the record: Temperature-sensitive suppressor mutations of the Escherichia coli DNA gyrase B proteinPROTEIN SCIENCE, Issue 5 2000Stephen J. Blance Abstract Escherichia coli strain LE316 contains a mutation in gyrB that results in the substitution of Val164 to Gly and confers both chlorobiocin resistance and temperature sensitivity. Selection for suppressors of the ts phenotype yielded second-site mutations in GyrB at His38 and Thr157. The properties of proteins bearing these mutations have been characterized, and a mechanism of suppression is proposed based upon structural considerations. [source] |