Secretory Portion (secretory + portion)

Distribution by Scientific Domains


Selected Abstracts


Female reproductive biology of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (Hymenoptera: Eulophidae), two parasitoids associated with the African Rice Gall Midge, Orseolia oryzivora (Diptera: Cecidomyiidae)

ENTOMOLOGICAL SCIENCE, Issue 2 2008
Souleymane NACRO
Abstract We investigated the female reproductive system of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (= Tetrastichus pachydiplosisae) (Hymenoptera: Eulophidae), two parasitoids associated with the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae). Both optical and electron microscopy were used. The female reproductive system of P. diplosisae includes two large ovaries of the meristic polytrophic-type, each composed of several tens of ovarioles. The system includes also a venomous gland that extends to a common oviduct. This gland had a filiform secretory portion, in which the epithelium was thin and surrounded a common evacuation canal. The secretory cells secrete into a large reservoir. Parasitism due to P. diplosisae is gregarious. The female reproductive system of A. procerae includes two ovaries of the meristic polytrophic-type, and each ovary has a few ovarioles. Each ovariole includes one or two oocytes, which can be seen in the vitellarium. Two accessory glands, which extend to the oviduct, are also visible. The secretory epithelium of the accessory gland is made up of a dense network of secretory cells surrounded by muscle fibers. Females of A. procerae pierce the tissues of the gall and probably deposit one egg on or close to the pupa of the midge. Aprostocetus procerae is a solitary parasitoid of the midge. The two parasitoids exploit the same host at different developmental stages. These findings improve our knowledge of the reproductive biology of these two parasitoids associated with the African rice gall midge, an important pest in Africa. [source]


Stimulation of keratinocyte differentiation , a new role for the vanilloid receptor subtype 1 (VR1/TRPV1)?

EXPERIMENTAL DERMATOLOGY, Issue 2 2005
Sonja Ständer
Vanilloids and endogenous cannabinoids mediate their actions via the vanilloid receptor subtype 1 (VR1/TRPV1), a non-selective cation channel, which is widely distributed in the central and peripheral nervous system. Only recently, VR1 has been shown to be expressed in keratinocytes in vitro and in vivo. However, a precise description of VR1 localization in epithelial cells was missing. To determine this, we investigated VR1-immunoreactivity as well as mRNA and protein expression in a series of biopsies from normal, diseased, and capsaicin-treated human skin. VR1 was found in epidermal keratinocytes, the inner root sheet and the infundibulum of hair follicles, differentiated sebocytes, sweat gland ducts, and the secretory portion of eccrine sweat glands upon immunohistochemistry, RT-PCR and Western blot analysis. Interestingly, in diseased skin such as prurigo nodularis, psoriasis vulgaris, and atopic dermatitis, VR1 expression in keratinocytes correlated with the degree of epidermal differentiation. Enhanced VR1 immunoreactivity and protein content was found in prurigo nodularis in which epidermal keratinocytes are highly differentiated. Under effective capsaicin therapy of prurigo nodularis, the epidermis thinned and the distribution pattern of VR1 on epidermal keratinocytes normalized. In psoriasis vulgaris, a disease with disturbed epidermal differentiation, less intense immunostaining for VR1 was observed. This could be confirmed by western blot analysis showing less VR1 protein amount in comparison to prurigo nodularis although histologically both showed a thickened epidermis. In atopic dermatitis, which is characterized by a moderate epidermal hyperplasia only and regular differentiated keratinocytes, VR1 immunoreactivity was unchanged in comparison to normal skin. These findings suggest that VR1 may contribute to regular differentiation of keratinocytes. VR1 activation opens non-selective cation channels with high permeability to calcium, a ion that is crucially important for the synthesis of cornification proteins such as involucrin, fillagrin and loricrin. The role of VR1 in other epithelial cells of appendage structures remains to be determined. In summary, VR1 is widely distributed in the skin suggesting a central role for this receptor not only in nociception but also maturation and function of epithelial cells. [source]


Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures

EXPERIMENTAL DERMATOLOGY, Issue 3 2004
Sonja Ständer
Abstract:, The vanilloid receptor subtype 1 (VR1)/(TRPV1), binding capsaicin, is a non-selective cation channel that recently has been shown in human keratinocytes in vitro and in vivo. However, a description of VR1 localization in other cutaneous compartments in particular cutaneous nerve fibers is still lacking. We therefore investigated VR1 immunoreactivity as well as mRNA and protein expression in a series (n = 26) of normal (n = 7), diseased (n = 13) [prurigo nodularis (PN) (n = 10), generalized pruritus (n = 1), and mastocytosis (n = 2)], and capsaicin-treated human skin (n = 6). VR1 immunoreactivity could be observed in cutaneous sensory nerve fibers, mast cells, epidermal keratinocytes, dermal blood vessels, the inner root sheet and the infundibulum of hair follicles, differentiated sebocytes, sweat gland ducts, and the secretory portion of eccrine sweat glands. Upon reverse transcriptase-polymerase chain reaction and Western blot analysis, VR1 was detected in mast cells and keratinocytes from human skin. In pruritic skin of PN, VR1 expression was highly increased in epidermal keratinocytes and nerve fibers, which was normalized after capsaicin application. During capsaicin therapy, a reduction of neuropeptides (substance P, calcitonin gene-related peptide) was observed. After cessation of capsaicin therapy, neuropeptides re-accumulated in skin nerves. In conclusion, VR1 is widely distributed in the skin, suggesting a major role for this receptor, e.g. in nociception and neurogenic inflammation. [source]


p63 expression in normal human epidermis and epidermal appendages and their tumors

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 1 2003
Miki Tsujita-Kyutoku
Background:, p63, a member of the p53 gene family, is expressed in basal cells of several different organs. Methods:, The immunoreactivity of p63 was examined in normal human epidermis and epidermal appendages and their tumors, and compared with proliferative activity as evaluated by Ki-67. Results:, In normal skin, p63 expression was seen in basal/suprabasal cells of the epidermis, outer root sheath and hair matrix cells of the hair follicle, seboblast situated in the outermost layer of sebaceous glands, and outer layer cells of the ductal portion and myoepithelial cells of the secretory portion of the sweat glands. p63 expression was confined to the cells forming a continuous basal rim along the normal epithelial structure. In tumors, p63 expression resembled that in normal tissue in that tumor components originating from p63-positive cells were constantly positive for p63. In normal and tumor tissues, not all p63-positive cells were positive for Ki-67. Conclusions:, p63 expression may be a marker of basal/progenitor cells in tumors of epidermis and epidermal appendages, and may be a diagnostic marker of these tumors. [source]