Home About us Contact | |||
Secretory Granules (secretory + granule)
Selected AbstractsSdmg1 is a component of secretory granules in mouse secretory exocrine tissuesDEVELOPMENTAL DYNAMICS, Issue 1 2009Diana Best Abstract Sdmg1 is a conserved eukaryotic transmembrane protein that is mainly expressed in the gonads where it may have a role in mediating signaling between somatic cells and germ cells. In this study we demonstrate that secretory exocrine cells in the pancreas, salivary gland, and mammary gland also express Sdmg1. Furthermore, we show that Sdmg1 expression is up-regulated during pancreas development when regulated secretory granules start to appear, and that Sdmg1 colocalizes with secretory granule markers in adult pancreatic acinar cells. In addition, we show that Sdmg1 co-purifies with secretory granules during subcellular fractionation of the pancreas and that Sdmg1 and the secretory granule marker Vamp2 are localized to distinct subdomains in the secretory granule membrane. These data suggest that Sdmg1 is a component of regulated secretory granules in exocrine secretory cells and that the developmental regulation of Sdmg1 expression is related to a role for Sdmg1 in post-Golgi membrane trafficking. Developmental Dynamics 238:223,231, 2009. © 2008 Wiley-Liss, Inc. [source] Zinc, a regulator of islet function and glucose homeostasisDIABETES OBESITY & METABOLISM, Issue 2009N. Wijesekara It is well known that zinc is required in pancreatic ,-cells in the process of insulin biosynthesis and the maturation of insulin secretory granules. In fact, the zinc level in pancreatic islets is amongst the highest in the body and reduction in its levels in the pancreas has been associated with diabetes. High concentrations of zinc can also be toxic because of enhanced oxidative damage. The link between zinc, diabetes and islet dysfunction has recently been reiterated by genomewide association studies that identified an islet cell membrane zinc transporter, SLC30A8 (ZnT8), as one of the risk loci for type 2 diabetes. Here we explore the importance of both zinc and ZnT8 to islet biology and whole body glucose homeostasis. [source] Low serum concentration of sulfatide and presence of sulfated lactosylceramid are associated with Type 2 diabetes.DIABETIC MEDICINE, Issue 9 2005The Skaraborg Project Abstract Aims The glycosphingolipid sulfatide (sulfated galactosyl-ceramide) increases exocytosis of ,-cell secretory granules, activates KATP -channels and is thereby able to influence insulin secretion through its presence in the islets. A closely related compound, sulfated lactosylceramide (sulf-lac-cer), is present in the islets during fetal and neonatal life when, as in Type 2 diabetes, insulin is secreted autonomically without the usual first phase response to glucose. The aim was to examine whether serum concentrations of these glycolipids are associated with Type 2 diabetes. Methods A case,control study, comprising 286 women and 283 men, was designed using a population-based sample of patients with Type 2 diabetes and a population survey. Results Low serum concentrations of sulfatide were associated with Type 2 diabetes, independent of traditional risk factors for diabetes in a sex-specific analysis: odds ratio (OR) 2.1 (95% confidence interval 1.1, 3.9) in men, and 2.3 (1.2, 4.3) in women, comparing the lowest and the highest tertiles. Type 2 diabetes was also associated with detectable amounts of sulf-lac-cer in serum: OR 1.7 (0.9, 3.4) in men, and 7.6 (3.8, 15.2) in women. After adjustment for confounding from other diabetes risk factors, these associations remained basically unchanged. The connections between sulfatide and Type 2 diabetes, and sulf-lac-cer and Type 2 diabetes were independent of each other. Insulin resistance (HOMA-IR) was negatively correlated with sulfatide concentration and positively correlated with sulf-lac-cer (both P < 0.0001, independently). Conclusions We report a new, robust and highly significant independent association between Type 2 diabetes and serum concentrations of sulfatide in both sexes, and sulf-lac-cer in females. The associations were also independent of other known diabetes risk factors. [source] Differential routing of coexisting neuropeptides in vasopressin neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Marc Landry Abstract The functional implications of intraneuronal coexistence of different neuropeptides depend on their respective targeting to release sites. In the rat hypothalamic magnocellular neurons, we investigated a possible differential routing of the coexpressed galanin and vasopressin. The respective location of proteins and messengers was assessed with double immunogold and in situ hybridization combining confocal and electron microscope analysis. The various populations of labelled granules were quantitatively compared in three subcellular compartments: perikarya, local processes and posthypophyseal nerve endings. Three subpopulations of granules were detected in all three compartments, but their respective amount showed significant differences. Galanin alone was immunolocalized in some secretory granules, vasopressin alone in others, and both peptides in a third subpopulation of granules. The major part of the granules containing vasopressin, either alone or in association with galanin, is found in neurohypophyseal nerve endings. In contrast, galanin single-labelled granules represent the most abundant population in dendritic processes, while double-labelled granules are more numerous in perikarya. This indicates a preferential distribution of the two peptides in the different compartments of magnocellular neurons. Furthermore, galanin and vasopressin messenger RNAs were detected at different domains of the endoplasmic reticulum, suggesting that translation might also occur at different locations, thus leading to partial segregation of galanin and vasopressin cargoes between two populations of secretory granules. The present study provides, for the first time in mammals, evidence suggesting that galanin and vasopressin are only partly copackaged and undergo a preferential targeting toward dendrites or neurohypophysis, suggesting different functions, autocrine/paracrine and endocrine, respectively. [source] Differential routing of coexisting neuropeptides in vasopressin neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Marc Landry Abstract The functional implications of intraneuronal coexistence of different neuropeptides depend on their respective targeting to release sites. In the rat hypothalamic magnocellular neurons, we investigated a possible differential routing of the coexpressed galanin and vasopressin. The respective location of proteins and messengers was assessed with double immunogold and in situ hybridization combining confocal and electron microscope analysis. The various populations of labelled granules were quantitatively compared in three subcellular compartments: perikarya, local processes and posthypophyseal nerve endings. Three subpopulations of granules were detected in all three compartments, but their respective amount showed significant differences. Galanin alone was immunolocalized in some secretory granules, vasopressin alone in others, and both peptides in a third subpopulation of granules. The major part of the granules containing vasopressin, either alone or in association with galanin, is found in neurohypophyseal nerve endings. In contrast, galanin single-labelled granules represent the most abundant population in dendritic processes, while double-labelled granules are more numerous in perikarya. This indicates a preferential distribution of the two peptides in the different compartments of magnocellular neurons. Furthermore, galanin and vasopressin messenger RNAs were detected at different domains of the endoplasmic reticulum, suggesting that translation might also occur at different locations, thus leading to partial segregation of galanin and vasopressin cargoes between two populations of secretory granules. The present study provides, for the first time in mammals, evidence suggesting that galanin and vasopressin are only partly copackaged and undergo a preferential targeting toward dendrites or neurohypophysis, suggesting different functions, autocrine/paracrine and endocrine, respectively. [source] Ultrastructural localization of salivary mucins MUC5B and MUC7 in human labial glandsEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2010Monica Piras Piras M, Hand AR, Tore G, Ledda GP, Piludu M. Ultrastructural localization of salivary mucins MUC5B and MUC7 in human labial glands. Eur J Oral Sci 2010; 118: 14,18. © 2010 The Authors. Journal compilation © 2010 Eur J Oral Sci As a result of their presence throughout the mouth in the submucosa or between muscle fibers, minor salivary glands secrete directly and continuously into the oral cavity, providing mucosal surfaces with highly glycosylated proteins that are active in bacterial aggregation and in oral tissue lubrication. In this study, we investigated the ultrastructural localization of the MUC5B and MUC7 mucins in human labial glands by means of a postembedding immunogold technique. Thin sections of normal human labial glands, obtained during surgery, were incubated with polyclonal antibodies to human salivary mucins MUC5B and MUC7, and then with gold-labeled secondary antibodies. Specific MUC5B reactivity was found in the secretory granules of mucous cells of all glands examined, and was associated with the luminal membrane of duct cells. MUC7 labeling was observed in the granules of both mucous and seromucous secretory cells of the glandular parenchyma. Quantitative analyses demonstrated that seromucous granules have higher immunogold labeling densities for MUC7 than mucous granules. Our immunohistochemical data extend the results of previous light microscopic studies of MUC5B and MUC7 localizations, pointing out the significant contribution of human labial glands in the secretion process of these two mucins. [source] Redistribution of small GTP-binding protein, Rab27B, in rat parotid acinar cells after stimulation with isoproterenolEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2009Akane Imai Small GTP-binding protein, Rab27, has been implicated in the regulation of different types of membrane trafficking, including melanosome transport in melanocytes and regulated secretion events in a wide variety of secretory cells. We have previously shown that Rab27 is involved in the control of isoproterenol (IPR)-induced amylase release from rat parotid acinar cells. Although Rab27 is predominantly localized on secretory granules under resting conditions, changes to its intracellular localization after ,-stimulation have never been elucidated. The present study investigated IPR-induced redistribution of Rab27B in the parotid acinar cells, revealing translocation from secretory granules to the subapical region after 5 min of IPR treatment and then diffusion into the cytosol after 30 min of IPR treatment. Dissociation of Rab27B from the apical plasma membrane is probably mediated through the Rab GDP dissociation inhibitor (GDI) in the cytosol extracting GDP-bound Rab protein from membranes, as a dramatic increase in the amount of the Rab27B,GDI complex in the cytosol was observed 30 min after stimulation with IPR. These results indicate that, in parotid acinar cells, Rab27B is translocated, in a time-dependent manner, from secretory granules into the apical plasma membrane as a result of exposure to IPR, and then into the cytosol through binding with the GDI. [source] PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechanismFEBS JOURNAL, Issue 16 2007Jimmy D. Dikeakos There are seven members of the proprotein convertase (PC) family of secreted serine proteases that cleave their substrates at basic amino acids, thereby activating a variety of hormones, growth factors, and viruses. PC1/3, PC2 and PC5/6A are the only members of the PC family that are targeted to dense core secretory granules, where they carry out the processing of proteins that are secreted from the cell in a regulated manner. Previous studies have identified ,-helices in the C-termini of the PC1/3 and PC2 proteases that are required for this subcellular targeting. In the current study, we demonstrate that a predicted ,-helix in the C-terminus of PC5/6A is also critical for the ability of this domain to target a heterologous protein to the regulated secretory pathway of mouse endocrine AtT-20 cells. Analysis of the subcellular distribution of fusion proteins containing the C-terminal domains of PC1/3, PC2 and PC5/6A confirmed that all three domains have the capacity to redirect a constitutively secreted protein to the granule-containing cytoplasmic extensions. Analysis of the predicted structures formed by these three granule-sorting helices shows a correlation between their granule-sorting efficiency and the clustering of hydrophobic amino acids in their granule-targeting helices. [source] The C-terminal region of the proprotein convertase 1/3 (PC1/3) exerts a bimodal regulation of the enzyme activity in vitroFEBS JOURNAL, Issue 13 2007Nadia Rabah The proprotein convertase PC1/3 preferentially cleaves its substrates in the dense core secretory granules of endocrine and neuroendocrine cells. Similar to most proteinases synthesized first as zymogens, PC1/3 is synthesized as a larger precursor that undergoes proteolytic processing of its signal peptide and propeptide. The N-terminally located propeptide has been shown to be essential for folding and self-inhibition. Furthermore, PC1/3 also possesses a C-terminal region (CT-peptide) which, for maximal enzymatic activity, must also be cleaved. To date, its role has been documented through transfection studies in terms of sorting and targeting of PC1/3 and chimeric proteins into secretory granules. In this study, we examined the properties of a 135-residue purified bacterially produced CT-peptide on the in vitro enzymatic activity of PC1/3. Depending on the amount of CT-peptide used, it is shown that the CT-peptide increases PC1/3 activity at low concentrations (nm) and decreases it at high concentrations (µm), a feature typical of an activator. Furthermore, we show that, contrary to the propeptide, the CT-peptide is not further cleaved by PC1/3 although it is sensitive to human furin activity. Based on these results, it is proposed that PC1/3, through its various domains, is capable of controlling its enzymatic activity in all regions of the cell that it encounters. This mode of self-control is unique among members of all proteinases families. [source] Protease,proteoglycan complexes of mouse and human mast cells and importance of their ,-tryptase,heparin complexes in inflammation and innate immunityIMMUNOLOGICAL REVIEWS, Issue 1 2007Richard L. Stevens Summary:, Approximately 50% of the weight of a mature mast cell (MC) consists of varied neutral proteases stored in the cell's secretory granules ionically bound to serglycin proteoglycans that contain heparin and/or chondroitin sulfate E/diB chains. Mouse MCs express the exopeptidase carboxypeptidase A3 and at least 15 serine proteases [designated as mouse MC protease (mMCP) 1,11, transmembrane tryptase/tryptase ,/protease serine member S (Prss) 31, cathepsin G, granzyme B, and neuropsin/Prss19]. mMCP-6, mMCP-7, mMCP-11/Prss34, and Prss31 are the four members of the chromosome 17A3.3 family of tryptases that are preferentially expressed in MCs. One of the challenges ahead is to understand why MCs express so many different protease,proteoglycan macromolecular complexes. MC-like cells that contain tryptase,heparin complexes in their secretory granules have been identified in the Ciona intestinalis and Styela plicata urochordates that appeared approximately 500 million years ago. Because sea squirts lack B cells and T cells, it is likely that MCs and their tryptase,proteoglycan granule mediators initially appeared in lower organisms as part of their innate immune system. The conservation of MCs throughout evolution suggests that some of these protease,proteoglycan complexes are essential to our survival. In support of this conclusion, no human has been identified that lacks MCs. Moreover, transgenic mice lacking the ,-tryptase mMCP-6 are unable to combat a Klebsiella pneumoniae infection effectively. Here we summarize the nature and function of some of the tryptase,serglycin proteoglycan complexes found in mouse and human MCs. [source] Synaptotagmin regulates mast cell functionsIMMUNOLOGICAL REVIEWS, Issue 1 2001Dana Baram Summary: Synaptotagmin(s) (Syts), are products of a gene family implicated in the control of Ca2+ -dependent exocytosis. Mast cells, specialized secretory cells that release mediators of inflammatory and allergic reactions in a process of regulated exocytosis, express Syt homologues and SNAREs (Soluble NSF Attachment proteins Receptors), which together with Syt constitute the core complex which mediates exocytotic vesicle docking and fusion. Rat basophilic leukemia cells (RBL-2H3), a tumor analogue of mucosal mast cells, express the Syt homologues Syt II, Syt III and Syt V. Expression of Syt I, the neuronal Ca2+ sensor, in the RBL cells, resulted in its targeting to secretory granules and in prominent potentiation and acceleration of Ca2+ -dependent exocytosis. Syt II is localized to an amine-free lysosomal compartment, which is also subjected to regulated exocytosis. Lysosomal exocytosis is negatively regulated by Syt II: overexpression of Syt II inhibited Ca2+ -triggered exocytosis of lysosomes, while suppression of Syt II expression markedly potentiated this release. These findings implicate Syt homologues as key regulators of mast cell function. We thank Drs. T.C. Sudhof, R.H. Scheller and M. Takahashi for their generous gifts of antibodies and cDNAs. [source] Recovery of rat submandibular salivary gland function following removal of obstruction: a sialometrical and sialochemical studyINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 6 2006Samira M. Osailan Summary Functional recovery of the rat submandibular gland following ligation of the main excretory duct was examined. Rat submandibular glands were ligated for 1, 4 and 8 weeks using a micro-clip with a plastic tube. Micro-clips were removed and glands were allowed to recover for periods of 8, 16 and 24 weeks. Submandibular glands were stimulated with autonomimetic drugs (methacholine and isoprenaline) and salivas were collected from atrophic or de-ligated and contralateral control glands. Glands recovered almost full size (92% of control gland) following 24 weeks of de-ligation. Saliva volume secreted by ligated/de-ligated (RSM) and control (LSM) glands were similar with different doses of agonists. Protein output expressed per gram of tissue wet weight was similar from both ligated/de-ligated and control glands with all doses of agonist. Sodium and chloride levels were higher from de-ligated glands than contralateral control glands. Protein electrophoresis showed similar profiles of salivary proteins in all samples with some minor differences. Acinar cells in de-ligated glands showed a normal morphology, as indicated by light microscopy, whilst granular ductal cells were fewer and contained fewer secretory granules. Sodium potassium ATPase staining of striated ducts in de-ligated glands was similar to that of control glands. It can be concluded that rat submandibular glands can regenerate following severe atrophy and secrete normal amounts of saliva containing broadly a full profile of secretory proteins. In contrast to acinar cells, ductal cells appear not to recover full function. [source] A comparative study of gland cells implicated in the nerve dependence of salamander limb regenerationJOURNAL OF ANATOMY, Issue 1 2010Anoop Kumar Abstract Limb regeneration in salamanders proceeds by formation of the blastema, a mound of proliferating mesenchymal cells surrounded by a wound epithelium. Regeneration by the blastema depends on the presence of regenerating nerves and in earlier work it was shown that axons upregulate the expression of newt anterior gradient (nAG) protein first in Schwann cells of the nerve sheath and second in dermal glands underlying the wound epidermis. The expression of nAG protein after plasmid electroporation was shown to rescue a denervated newt blastema and allow regeneration to the digit stage. We have examined the dermal glands by scanning and transmission electron microscopy combined with immunogold labelling of the nAG protein. It is expressed in secretory granules of ductless glands, which apparently discharge by a holocrine mechanism. No external ducts were observed in the wound epithelium of the newt and axolotl. The larval skin of the axolotl has dermal glands but these are absent under the wound epithelium. The nerve sheath was stained post-amputation in innervated but not denervated blastemas with an antibody to axolotl anterior gradient protein. This antibody reacted with axolotl Leydig cells in the wound epithelium and normal epidermis. Staining was markedly decreased in the wound epithelium after denervation but not in the epidermis. Therefore, in both newt and axolotl the regenerating axons induce nAG protein in the nerve sheath and subsequently the protein is expressed by gland cells, under (newt) or within (axolotl) the wound epithelium, which discharge by a holocrine mechanism. These findings serve to unify the nerve dependence of limb regeneration. [source] Ultrastructural changes of posterior lingual glands after hypoglossal denervation in hamstersJOURNAL OF ANATOMY, Issue 1 2009S. J. Cheng Abstract Posterior lingual glands consist of two sets of minor salivary glands that serve important functions in oral physiology. To investigate the hypothesis that the hypoglossal nerve provides sympathetic innervation to the posterior lingual glands, we examined ultrastructural changes in the glands following hypoglossal denervation. In the posterior deep lingual glands (of von Ebner), the serous acinar cells showed a decrease in the number of secretory granules and an increase in lipofuscin accumulation. The ratios of cells containing lipofuscin granules were 11.39, 36.49 and 50.46%, respectively, of the control, 3- and 7-day post-axotomy glands (P < 0.001). Intraepithelial phagocytotic activity was increased. The mucous acinar cells in the posterior superficial lingual glands (of Weber) also showed degenerative changes after hypoglossal denervation. One week after nerve transection, marked cytoplasmic vacuolation and fragmentation of organelles were frequently observed. Degenerative changes were also found in unmyelinated axons associated with the glands. We provide the first evidence of the structural and functional connections between the sympathetic component of the hypoglossal nerve and posterior lingual glands. [source] Electron microscopic detection of statherin in secretory granules of human major salivary glandsJOURNAL OF ANATOMY, Issue 5 2008M. Isola Abstract In order to increase current knowledge regarding statherin secretion into the oral cavity, ultrastructural localization of this peptide was investigated in human salivary glands by using a post-embedding immunogold staining technique. Statherin reactivity was found inside the granules of serous cells of parotid and submandibular glands. In parotid granules immunostaining was preferentially present in the less electron-dense region, whereas in submandibular serous granules the reactivity was uniform and the dense core always stained. By contrast, none or weak reactivity was observed in serous cells of major sublingual glands. These findings reveal for the first time the subcellular localization of statherin by electron transmission microscopy and confirm that of the three major types of salivary glands, the parotid and submandibular glands are the greatest source of salivary statherin. Moreover, they suggest that more than one packaging mechanism may be involved in the storage of statherin within serous granules of salivary glands. [source] Changes in the oviducal epithelium during the estrous cycle in the marsupial Monodelphis domesticaJOURNAL OF ANATOMY, Issue 4 2007Annetrudi Kress Abstract The Monodelphis oviduct can be divided into four anatomical segments: preampulla (comprising fimbriae and infundibulum), ampulla, isthmus with crypts and uterotubal junction. Ovaries are enclosed in a periovarial sac, the bursa, and in some specimens tubules of an epoophoron could be identified. In both structures non-ciliated cells develop small translucent vesicles, which accumulate in the cell apices and presumably produce fluid as often seen in the bursa and in the tubules of the epooophoron. These vesicles do not stain with Alcian blue or PAS. The same applies also to the non-ciliated cells of the fimbriae. The oviducal epithelium of ampulla and the surface epithelium of the isthmus consisting of ciliated and non-ciliated, secretory cells undergo considerable changes during the estrous cycle. Proestrus shows low numbers of ciliated cells, some are in the process of neo-ciliogenesis, non-ciliated cells carry solitary cilia and few remnant secretory granules from the previous cycle may be found. At estrus the amount of ciliated cells in ampulla and isthmus has increased, most non-cililated cells lost the solitary cilia, developed longer microvilli and formed numerous secretory granules in their cell apices. At postestrus secretory products, often surrounded by membranes, are extruded into the oviducal lumen and contribute towards egg coat formation. First signs of deciliation processes are apparent. Solitary cilia reappear. At metestrus only few secretory cells are left with some secretory material. The lumen is often filled with shed cilia and cell apices. Proliferation of basal bodies within non-secretory cells indicate the formation of new ciliated cells. The non-ciliated epithelial cells of the isthmic crypts form no secretory granules but accumulate a great number of translucent vesicles, which in contrast to the secretory granules do not stain with Alcian blue or PAS. [source] Heparin modulates the growth and adherence and augments the growth-inhibitory action of TNF-, on cultured human keratinocytesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004Ilkka T. Harvima Abstract Previous works suggest the involvement of mast cells in the epithelialization of chronic wounds. Since heparin is a major mediator stored in the secretory granules of mast cells, the purpose of this work was to elucidate the function of heparin in epithelialization using in vitro culture models. For this, low- and high-calcium media in monolayer and epithelium cultures of keratinocytes were used. Also, an assay based on keratinocyte adherence onto plastic surface was used as well. Heparin (0.02,200 ,g/ml) inhibited keratinocyte growth in a non-cytotoxic and dose-dependent manner in low- and high-calcium media, Keratinocyte-SFM® and DMEM, in the absence of growth factors and serum. Also, heparin inhibited the growth of keratinocyte epithelium in the presence of 10% fetal calf serum and DMEM. Instead, in the presence of Keratinocyte-SFM and growth factors, heparin at 2 ,g/ml inhibited the growth by 18% but at higher heparin concentrations the inhibition was reversed to baseline. TNF-, is another preformed mediator in mast cell granules and it inhibited keratinocyte growth in monolayer and epithelium cultures. Interestingly, heparin at 2,20 ,g/ml augmented or even potentiated this growth-inhibitory effect of TNF-,. The association of TNF-, with heparin was shown by demonstrating that TNF-, bound tightly to heparin-Sepharose chromatographic material. However, heparin could not augment TNF-,-induced cell cycle arrest at G0/G1 phase or intercellular adhesion molecule-1 expression in keratinocytes. In the cell adherence assay, heparin at 2 ,g/ml inhibited significantly by 12,13% or 33% the adherence of keratinocytes onto the plastic surface coated with fibronectin or collagen, respectively, but this inhibition was reversed back to baseline at 20 or 200 ,g/ml heparin. Also, heparin affected the cell membrane rather than the protein coat on the plastic surface. In conclusion, heparin not only inhibits or modulates keratinocyte growth and adherence but it also binds and potentiates the growth-inhibitory function of TNF-,. © 2004 Wiley-Liss, Inc. [source] Comparative morphology of the foot structure of four genera of Loxosomatidae (Entoprocta): Implications for foot functions and taxonomyJOURNAL OF MORPHOLOGY, Issue 10 2010Tohru Iseto Abstract Entoprocta is a group of mostly cryptic, benthic invertebrates with a sedentary lifestyle. Here, we investigate the morphology of the entoproct foot, which is an important structure in attachment and locomotion. We describe the foot structure of four solitary entoprocts, Loxosoma monilis, Loxosomella stomatophora, Loxocorone allax, and Loxomitra mizugamaensis, by means of light and transmission electron microscopy. Gland cells containing secretory granules were found in the foot of all the four species. In L. monilis, the gland cells densely paved the underside of the disc-shaped foot, but no duct or groove was found. In L. stomatophora and L. allax, a foot gland was present at the frontal end of a foot groove. The foot gland was a solid cell mass in the former species but a sac-like structure in the latter. Two types of groove accessory cells were recognized in both species; groove bulge cells (GBCs) showed large cytoplasmic bulges extending into the groove lumen, while groove microvillus cells have microvillus mats in the lateral wall of the groove. The bulges of GBCs in L. stomatophora are slender and attached to one another with desmosomes, forming appendages that extend down to the substratum, hinting at their contribution to attachment and locomotion. The bulges in L. allax form large swellings that fill the groove lumen and are connected to the surrounding cells with hemidesmosomes. In the liberated buds of L. mizugamaensis, tripartite gland cell masses were found at the basal end of the stalk, but no groove was found. A small invagination, which may be the opening of the gland, was found at the center of the foot tip, where the liberated buds attach themselves to the substratum and then metamorphose into adults. No openings were found at the lateral terminal wings, which support locomotion in Loxomitra species. J. Morphol. 271:1185,1196, 2010. © 2010 Wiley-Liss, Inc. [source] Lectin histochemical studies on the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgataJOURNAL OF MORPHOLOGY, Issue 10 2010Daisuke Kondoh Abstract The olfactory epithelium and the vomeronasal organ of the Japanese striped snake were examined by lectin histochemistry. Of the 21 lectins used in the study, all lectins except succinylated-wheat germ agglutinin (s-WGA) showed similar binding patterns in the vomeronasal receptor cells and the olfactory receptor cells with varying intensities. The binding patterns of s-WGA varied among individuals in the vomeronasal and olfactory receptor cells, respectively. Four lectins, Bandeiraea simplicifolia lectin-II (BSL-II), Dolichos biflorus agglutinin (DBA), Sophora japonica agglutinin (SJA), and Erythrina cristagalli lectin (ECL) stained secretory granules and the organelles in the olfactory supporting cells and did not stain them in the vomeronasal supporting cells. These results suggest that the glycoconjugate moieties are similar in the vomeronasal and olfactory receptor cells of the Japanese striped snake. J. Morphol., 2010. © 2010 Wiley-Liss, Inc. [source] Renal sexual segment of the Cottonmouth snake, Agkistrodon piscivorous (Reptilia, Squamata, Viperidae)JOURNAL OF MORPHOLOGY, Issue 6 2008David M. Sever Abstract The seasonal variation of the renal sexual segment (RSS) of males of the Cottonmouth snake, Agkistrodon piscivorous, is described using light and electron microscopy. This study is the first to describe the ultrastructure of the RSS of a viper (Viperidae) and only the fourth on a snake. Renal sexual segments from males collected February to May and from August to November are similar in appearance. The cells are eosinophilic and react with periodic acid/Schiff procedure (PAS) for neutral carbohydrates and bromphenol blue (BB) for proteins. At the ultrastructure level, the cells contain large (2 ,m diameter), electron-dense secretory granules and smaller vesicles with a diffuse material, and these structures abut against the luminal border and upon clear vacuoles continuous with intercellular canaliculi. Evidence was found for both apocrine and merocrine processes of product release. In June and July, the RSS are significantly smaller in diameter, largely basophilic, and have only scattered granules that are PAS+ and BB+. Cytologically, the RSS from June to July lack electron-dense secretory granules and the smaller vesicles with diffuse material. Numerous condensing vacuoles and abundant rough endoplasmic reticulum, however, indicate that active product synthesis is occurring. This is the first report of significant seasonal variation in the histology and ultrastructure of the RSS of a snake, although such reports exist for lizards. The seasons when the RSS is most highly hypertrophied correspond to the fall and spring mating seasons of A. piscivorous, as determined by other studies. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source] Olfactory metamorphosis in the Coastal Giant Salamander (Dicamptodon tenebrosus)JOURNAL OF MORPHOLOGY, Issue 1 2005Jeremy T. Stuelpnagel Abstract This study examined the gross morphology and ultrastructure of the olfactory organ of larvae, neotenic adults, and terrestrial adults of the Coastal Giant Salamander (Dicamptodon tenebrosus). The olfactory organ of all aquatic animals (larvae and neotenes) is similar in structure, forming a tube extending from the external naris to the choana. A nonsensory vestibule leads into the main olfactory cavity. The epithelium of the main olfactory cavity is thrown into a series of transverse valleys and ridges, with at least six dorsal and nine ventral valleys lined with olfactory epithelium, and separated by ridges of respiratory epithelium. The ridges enlarge with growth, forming large flaps extending into the lumen in neotenes. The vomeronasal organ is a diverticulum off the ventrolateral side of the main olfactory cavity. In terrestrial animals, by contrast, the vestibule has been lost. The main olfactory cavity has become much broader and dorsoventrally compressed. The prominent transverse ridges are lost, although small diagonal ridges of respiratory epithelium are found in the lateral region of the ventral olfactory epithelium. The posterior and posteromedial wall of the main olfactory cavity is composed of respiratory epithelium, in contrast to the olfactory epithelium found here in aquatic forms. The vomeronasal organ remains similar to that in large larvae, but is now connected to the mouth by a groove that extends back through the choana onto the palate. Bowman's glands are present in the main olfactory cavity at all stages, but are most abundant and best developed in terrestrial adults. They are lacking in the lateral olfactory epithelium of the main olfactory cavity. At the ultrastructural level, in aquatic animals receptor cells of the main olfactory cavity can have cilia, short microvilli, a mix of the two, or long microvilli. Supporting cells are of two types: secretory supporting cells with small, electron-dense secretory granules, and ciliated supporting cells. Receptor cells of the vomeronasal organ are exclusively microvillar, but supporting cells are secretory or ciliated, as in the main olfactory cavity. After metamorphosis two distinct types of sensory epithelium occur in the main olfactory cavity. The predominant epithelium, covering most of the roof and the medial part of the floor, is characterized by supporting cells with large, electron-lucent vesicles. The epithelium on the lateral floor of the main olfactory cavity, by contrast, resembles that of aquatic animals. Both types have both microvillar and ciliated receptor cells. No important changes are noted in cell types of the vomeronasal organ after metamorphosis. A literature survey suggests that some features of the metamorphic changes described here are characteristic of all salamanders, while others appear unique to D. tenebrosus. J. Morphol. © 2005 Wiley-Liss, Inc. [source] Amylase and cyclic amp receptor protein expression in human diabetic parotid glandsJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 9 2010Monica Piras J Oral Pathol Med (2010) 39: 715,721 Background:, Salivary dysfunction and oral disorders have been described in both type 1 and type 2 diabetes mellitus. However, the cellular and molecular consequences of diabetes on oral tissues remain to be ascertained. The purpose of this investigation was to study, by means of electron microscopy, the morphologic and molecular changes that occur in salivary glands during diabetes. Methods:, Biopsy samples of parotid glands were excised from non-diabetic and diabetic (type 1 and type 2) consenting patients and processed by standard methods for routine morphology and electron microscopic immunogold labeling. Specific antibodies were used to determine and quantify the expression of secretory proteins (alphaamylase and the regulatory subunit of type II protein kinase A). Results:, Morphologic changes in the diabetic samples included increased numbers of secretory granules, and alterations in internal granule structure. Quantitative analysis of immunogold labeling showed that labeling densities were variable among the parotid gland samples. In type 1 diabetes amylase expression was greater than in non-diabetic glands, whereas in type 2 diabetes it was not significantly changed. Expression of type II regulatory subunits was slightly, although not significantly, increased in acinar secretory granules of type 1 diabetic samples and was unchanged in type 2 diabetic samples. Conclusions:, Our data show that diabetes elicits specific changes in secretory protein expression in human salivary glands, thus contributing to the altered oral environment and oral disease associated with diabetes. [source] Mass spectrometry strategies applied to the characterization of proline-rich peptides from secretory parotid granules of pig (Sus scrofa)JOURNAL OF SEPARATION SCIENCE, JSS, Issue 3 2008Chiara Fanali Abstract Basic proline-rich proteins (bPRPs) are a class of proteins widely present in saliva of humans and other mammals. They are synthesized as preproproteins and enzymatically cleaved into small peptides before secretion from the salivary glands. Recently, we characterized two proline-rich peptides (SP-A and SP-B) in parotid secretory granules of pig (Sus Scrofa) that are derived from three isoforms of a PRP proprotein (Swiss-Prot data bank: Q95JC9-1, Q95JC9-2 and Q95JC9-3). Together the coding regions for SP-A and SP-B, which are repeated many times, account for 52,70% of the coding regions of the PRP proproteins. This study was undertaken to identify peptides encoded by unassigned regions of the PRP proproteins. RP-HPLC-ESI-IT-MS analysis of enriched granule preparations from pig parotid glands by two different analytical strategies identified ten new proline-rich peptides derived from the three proproteins. Together with the coding regions for SP-A and SP-B already identified it was possible to assign 68,75% of the proproteins coding regions. The peptide sequences indicated a number of unusual proteolytic cleavage sites suggesting the presence of unknown proprotein convertases. [source] Flow cytometry-assisted purification and proteomic analysis of the corticotropes dense-core secretory granulesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2008Daniel J. Gauthier Abstract The field of organellar proteomics has emerged as an attempt to minimize the complexity of the proteomics data obtained from whole cell and tissue extracts while maximizing the resolution on the protein composition of a single subcellular compartment. Standard methods involve lengthy density-based gradient and/or immunoaffinity purification steps followed by extraction, 1-DE or 2-DE, gel staining, in-gel tryptic digestion, and protein identification by MS. In this paper, we present an alternate approach to purify subcellular organelles containing a fluorescent reporter molecule. The gel-free procedure involves fluorescence-assisted sorting of the secretory granules followed by gentle extraction in a buffer compatible with tryptic digestion and MS. Once the subcellular organelle labeled, this procedure can be done in a single day, requires no major modification to any instrumentation and can be readily adapted to the study of other organelles. When applied to corticotrope secretory granules, it led to a much enriched granular fraction from which numerous proteins could be identified through MS. [source] Noradrenaline inhibits exocytosis via the G protein ,, subunit and refilling of the readily releasable granule pool via the ,i1/2 subunitTHE JOURNAL OF PHYSIOLOGY, Issue 18 2010Ying Zhao The molecular mechanisms responsible for the ,distal' effect by which noradrenaline (NA) blocks exocytosis in the ,-cell were examined by whole-cell and cell-attached patch clamp capacitance measurements in INS 832/13 ,-cells. NA inhibited Ca2+ -evoked exocytosis by reducing the number of exocytotic events, without modifying vesicle size. Fusion pore properties also were unaffected. NA-induced inhibition of exocytosis was abolished by a high level of Ca2+ influx, by intracellular application of antibodies against the G protein subunit G, and was mimicked by the myristoylated ,,-binding/activating peptide mSIRK. NA-induced inhibition was also abolished by treatment with BoNT/A, which cleaves the C-terminal nine amino acids of SNAP-25, and also by a SNAP-25 C-terminal-blocking peptide containing the BoNT/A cleavage site. These data indicate that inhibition of exocytosis by NA is downstream of increased [Ca2+]i and is mediated by an interaction between G,, and the C-terminus of SNAP-25, as is the case for inhibition of neurotransmitter release. Remarkably, in the course of this work, a novel effect of NA was discovered. NA induced a marked retardation of the rate of refilling of the readily releasable pool (RRP) of secretory granules. This retardation was specifically abolished by a G,i1/2 blocking peptide demonstrating that the effect is mediated via activation of G,i1 and/or G,i2. [source] Mapping pro- and antiangiogenic factors on the surface of prostasomes of normal and malignant cell originTHE PROSTATE, Issue 8 2010Adil A. Babiker Abstract BACKGROUND Angiogenesis is the formation of new blood vessels by capillary sprouting from pre-existing vessels. Tumor growth is angiogenesis-dependent and the formation of new blood vessels is associated with the increased expression of angiogenic factors. Prostasomes are secretory granules produced, stored and released by the glandular epithelial cells of the prostate. We investigated the expression of selected angiogenic and anti-angiogenic factors on the surface of prostasomes of different origins as well as the direct effect of prostasomes on angiogenesis. METHODS VEGF, endothelin-1, endostatin, and thrombospondin-1 were determined on prostasomes from seminal fluid and human prostate cancer cell lines (DU145,PC-3,LNCaP) using different immunochemical techniques. Human dermal microvascular endothelial cells were incubated with seminal and DU145 cell-prostasomes and with radioactive thymidine. The effect of prostasomes on angiogenesis was judged by measuring the uptake of labeled thymidine. The presence of any deleterious effects of prostasomes on the endothelial cells was investigated using thymidine assay and confocal laser microscopy. RESULTS VEGF and endothelin-1 were determined on malignant cell-prostasomes (no difference between cell lines) but not determined on seminal prostasomes. The same applies for the expression of endostatin but with much higher expression on malignant cell-prostasomes with obvious differences between them. Seminal and DU145 cell-prostasomes were found to have anti-angiogenic effect which was more expressed by DU145 cell-prostasomes. No deleterious effect of prostasomes on endothelial function was detected using either thymidine assay or microscopy. CONCLUSIONS Prostasomes contain pro- and anti-angiogenic factors that function to counteract each other unless the impact from one side exceeds the other to bring about dysequilibrium. Prostate 70: 834,847, 2010. © 2010 Wiley-Liss, Inc. [source] Purification of the keratan sulfate proteoglycan expressed in prostatic secretory cells and its identification as lumicanTHE PROSTATE, Issue 3 2004John W. Holland Abstract BACKGROUND Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65,95 kDa. The KS moiety was susceptible to digestion with keratanase II and peptide N -glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. © 2004 Wiley-Liss, Inc. [source] Histomorphology of the Proventriculus of three Species of Australian Passerines: Lichmera indistincta, Zosterops lateralis and Poephila guttataANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2009Y. O. Ogunkoya Summary Histomorphology of the proventriculi of nectarivorous, granivorous and omnivorous passerines was studied. The proventriculus consisted of mucosal, submucosal, muscularis and serosal layers. Proventricular wall was thickest in omnivore, thinnest in granivore and intermediate in nectarivore. The openings of mucosal glands had a single spiral-like fold of mucosa in the omnivorous Silvereye, 2,3 spirals in the granivorous Zebra finch and 4,5 spirals in the nectarivorous Brown honeyeater. The mucosal glands were arranged in a uniform row in the wall of the organ and opened individually via a primary duct to the lumen of the proventriculus. The surface epithelial cells of the tunica mucosa contained secretory cells and the proventricular glands contained endocrine, neck and oxynticopeptic cells. The ultrastructural features of the oxynticopeptic cells changed from the oral to the aboral portion of the gland. In the oral region, the cytoplasm presented numerous, smaller (600,900 nm) homogenously dense zymogen secretory vesicles and larger (0.8,2.3 ,m) pale floccular, tubular, mucin-like secretory granules, few small mitochondria and RER while in the aboral portion of the gland, the cytoplasm presented numerous, large mitochondria with closely packed cristae, secondary lysosome and infolding of the basal and apical cell membrane. The tunica sub mucosa was thin with occasional large blood vessels. The tunica muscularis consisted of inner longitudinal, middle circular and outer longitudinal layers. The external tunica serosa contained large bundles of myelinated and unmyelinated axons that were possibly branches of the intestinal nerve. The structural adaptations of the proventriculi of these three species to their various diets are discussed. [source] Light and ultrastructural immunocytochemical study of somatotropic cells (GH cells) in ovine adenohypophysis: lactation and weaning influencesANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2000A. Bernabé The influence of lactation period and weaning on the distribution, number, and structure of somatotropic cells (GH cells) in ewes was studied using immunocytochemical procedures for light and electron microscopy, as well as morphometric and stereological techniques. The adenohypophyseal gland of 12 ewes of the Segureña breed in different stages of milk production and weaning was studied, while three ewes in anoestrus served as controls. The size of secretory granules was heterogeneous in all stages, suggesting that this characteristic is not related to functional activity. During lactation and weaning the size of GH cells decreased, while the number of ,synthesis cells' increased. The rough endoplasmic reticulum and Golgi complex appeared more developed and small secretory granules showed lower gold particle labelling. These data suggest that GH cells are more active during lactation, particularly during late lactation. [source] Biology of the prolactin family in bovine placenta.ANIMAL SCIENCE JOURNAL, Issue 1 2006ABSTRACT Bovine placenta produces an array of proteins that are structurally and functionally similar to pituitary prolactin. Bovine placental lactogen (bPL) is a glycoprotein hormone that has lactogenic and somatogenic properties. Purified bPL contains several kinds of isoforms that are created by alternative splicing and/or multiple glycosylation patterns. bPL can activate the prolactin (PRL) receptor-mediated signaling pathway as well as PRL does. The bPL mRNA is transcribed in trophoblast binucleate cells, and synthesized bPL protein is stored in membrane-bound secretory granules. The message encoding bPL is first detectable in trophoblast binucleate cells at approximately day 20 of gestation at, or shortly after, the appearance of binucleate cells in the trophoblast. Most binucleate cells are detected as expressed bPL in the placenta. Bovine PL may be the determinant in trophoblast differentiation. Although the biological activities of bPL have long been studied, the precise role of bPL is still largely unclear. This article reviews and discusses the biological roles of bPL, focusing on luteal function, fetal growth and pregnancy-associated maternal adaptation, mammogenesis and lactogenesis, and placental angiogenesis. The precise biological function of bPL needs to be further evaluated. [source] |