Secreted Effector Proteins (secreted + effector_protein)

Distribution by Scientific Domains


Selected Abstracts


Modulation of phosphoinositide metabolism by pathogenic bacteria

CELLULAR MICROBIOLOGY, Issue 11 2006
Hubert Hilbi
Summary Phosphoinositide metabolism plays a pivotal role in the regulation of receptor-mediated signal transduction, actin remodelling and membrane dynamics. Phosphoinositides co-ordinate these processes by recruiting protein effectors to distinct cellular membranes in a time- and organelle-dependent manner. Intracellular bacterial pathogens interfere with phosphoinositide metabolism to direct their entry into eukaryotic cells, form replication-permissive vacuoles, modulate apoptosis, or trigger fluid secretion. Gram-negative pathogens such as Legionella pneumophila, Shigella flexneri, or Salmonella enterica employ secretion systems to invade host cells by ,pathogen-triggered phagocytosis' and thereby bypass a requirement for phosphatidylinositol 3-kinases [PI(3)Ks]. Contrarily, ,receptor-mediated phagocytosis' of Yersinia spp., Listeria monocytogenes and other pathogenic bacteria depends on PI(3)Ks. Secreted effector proteins have been found to directly bind to and modify host cell phosphoinositides, thus modulating phagocytosis and intracellular survival of the pathogens. These effectors include L. pneumophila proteins that specifically attach to phosphatidylinositol 4-phosphate [PI(4)P] on the Legionella -containing vacuole, and phosphoinositide phosphatases produced by S. flexneri, S. enterica or Mycobacterium tuberculosis. This review covers current knowledge about subversion of host cell phosphoinositide metabolism by intracellular bacterial pathogens with an emphasis on recently identified secreted effector proteins directly engaging phosphoinositides. [source]


A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death

THE PLANT JOURNAL, Issue 3 2010
Brendan S. Kelley
Summary Evasion or active suppression of host defenses are critical strategies employed by biotrophic phytopathogens and hemibiotrophs whose infection mechanism includes sequential biotrophic and necrotrophic stages. Although defense suppression by secreted effector proteins has been well studied in bacteria, equivalent systems in fungi and oomycetes are poorly understood. We report the characterization of SNE1 (suppressor of necrosis 1), a gene encoding a secreted protein from the hemibiotrophic oomycete Phytophthora infestans that is specifically expressed at the transcriptional level during biotrophic growth within the host plant tomato (Solanum lycopersicum). Using transient expression assays, we show that SNE1 suppresses the action of secreted cell death-inducing effectors from Phytophthora that are expressed during the necrotrophic growth phase, as well as programmed cell death mediated by a range of Avr,R protein interactions. We also report that SNE1 contains predicted NLS motifs and translocates to the plant nucleus in transient expression studies. A conceptual model is presented in which the sequential coordinated secretion of antagonistic effectors by P. infestans first suppresses, but then induces, host cell death, thereby providing a highly regulated means to control the transition from biotrophy to necrotrophy. [source]


Modulation of phosphoinositide metabolism by pathogenic bacteria

CELLULAR MICROBIOLOGY, Issue 11 2006
Hubert Hilbi
Summary Phosphoinositide metabolism plays a pivotal role in the regulation of receptor-mediated signal transduction, actin remodelling and membrane dynamics. Phosphoinositides co-ordinate these processes by recruiting protein effectors to distinct cellular membranes in a time- and organelle-dependent manner. Intracellular bacterial pathogens interfere with phosphoinositide metabolism to direct their entry into eukaryotic cells, form replication-permissive vacuoles, modulate apoptosis, or trigger fluid secretion. Gram-negative pathogens such as Legionella pneumophila, Shigella flexneri, or Salmonella enterica employ secretion systems to invade host cells by ,pathogen-triggered phagocytosis' and thereby bypass a requirement for phosphatidylinositol 3-kinases [PI(3)Ks]. Contrarily, ,receptor-mediated phagocytosis' of Yersinia spp., Listeria monocytogenes and other pathogenic bacteria depends on PI(3)Ks. Secreted effector proteins have been found to directly bind to and modify host cell phosphoinositides, thus modulating phagocytosis and intracellular survival of the pathogens. These effectors include L. pneumophila proteins that specifically attach to phosphatidylinositol 4-phosphate [PI(4)P] on the Legionella -containing vacuole, and phosphoinositide phosphatases produced by S. flexneri, S. enterica or Mycobacterium tuberculosis. This review covers current knowledge about subversion of host cell phosphoinositide metabolism by intracellular bacterial pathogens with an emphasis on recently identified secreted effector proteins directly engaging phosphoinositides. [source]