Seasonal Wetlands (seasonal + wetland)

Distribution by Scientific Domains


Selected Abstracts


Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada

HYDROLOGICAL PROCESSES, Issue 11 2004
David F. Parsons
Abstract In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment,water interface and groundwater recharge under wetlands. A whole-wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water-level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40,80 cm of the soil surface. However, some bromide penetrated as deep as 2,3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd. [source]


Ecohydrology of a seasonal wetland in the Rift Valley: ecological characterization of Lake Solai

AFRICAN JOURNAL OF ECOLOGY, Issue 3 2009
Tanguy De Bock
Abstract The following research describes through an ecohydrological approach, the first assessment of the ecology of Lake Solai, with a particular emphasis on the vegetation. Lake Solai is located 50 km north of Nakuru in the Rift Valley in Kenya at E36°80,,36°84, to N00°05,,00°08,. It is a shallow lake that follows a very peculiar seasonal water regime, and that faces conflicts between agriculture and conservation water users. In the upper catchment, an overview of the agricultural practices was implemented and river water uses were identified to assess river flows. Crops/grassland and woodland/shrubland were the major land uses, covering c. 65% of the catchment. Closer to the lake, vegetation samples were collected around the lake together with samples of environmental factors such as soil and water quality. Thirteen vegetation communities were identified within four main zonations: forest, grassland, river inlet and rocky outcrop. These communities showed abundance, distribution and diversity determined mostly by the human pressures, the flooding periods and the salinity. Cynodon, Cyperus and Sporobolus genera were the most abundant. Résumé La recherche suivante décrit, par une approche éco-hydrologique, la première évaluation de l'écologie du lac Solai, en insistant particulièrement sur la végétation. Le lac Solai est situéà 50 km au nord de Nakuru, dans la vallée du Rift kényane, et ses coordonnées sont 36°80,,36°84E à 00°05,,00°08,N. C'est un lac peu profond qui est soumis à un régime hydrique saisonnier très particulier et qui est confrontéà des conflits entre acteurs agricoles et de conservation de la nature. En amont du bassin, une étude des pratiques agricoles a été effectuée, puis les utilisations de l'eau identifiées pour évaluer les débits des rivières. Les cultures/prairies et les forêts/broussailles étaient les principales utilisations des terres et couvraient environ 65% du bassin versant. Plus en aval, des échantillons de végétation ont été récoltés le long du lac, en même temps que des échantillons de facteurs environnementaux tels que le sol et l'eau. Treize communautés végétales ont été identifiées au sein de quatre zones principales: forêt, prairie, rivière entrante et affleurement rocheux. Ces communautés présentaient une abondance, une distribution et une diversité qui étaient principalement déterminées par les pressions humaines, les périodes d'inondation et la salinité. Les genres Cynodon, Cyperus et Sporobolusétaient les plus abondants. [source]


Application of carbon isotope analysis to ancient maize agriculture in the Petexbatún region of Guatemala

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 3 2007
Kristofer D. Johnson
The ancient Maya subsisted in an environment limited by shallow soils and unpredictable weather patterns until their collapse ,A.D. 800,900. Ancient subsistence can be a difficult subject, with little physical evidence of agricultural artifacts and structures. This study characterized soil profiles and utilized changes in stable carbon isotope ratios of soil organic matter (SOM) to locate and interpret areas of ancient C4 plant growth and maize (Zea mays) cultivation among the Maya. The investigation indicated some of the challenges the Maya faced, including shallow and sloped soils in some areas. The C4 plant signature was found in seasonal wetland soils on the opposite side of the Laguneta Aguateca from the ruins of Aguateca, but not in the perennial wetlands on the immediate side. No C4 plant signature was detected in the shoulder and backslope soils. Based on these findings, the ancient Maya of Aguateca probably adapted to their environment by farming rich toeslope soils. It is possible that maize was also grown in the seasonal wetlands adjacent to the site. If the steep backslope soils around Aguateca were used in ancient agriculture, the evidence has probably eroded away. © 2007 Wiley Periodicals, Inc. [source]


Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada

HYDROLOGICAL PROCESSES, Issue 11 2004
David F. Parsons
Abstract In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment,water interface and groundwater recharge under wetlands. A whole-wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water-level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40,80 cm of the soil surface. However, some bromide penetrated as deep as 2,3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd. [source]


Assessing the impacts of fire on the vegetation resources that are available to the local communities of the seasonal wetlands of the Okavango, Botswana, in the context of different land uses and key government policies

AFRICAN JOURNAL OF ECOLOGY, Issue 2009
Budzanani Tacheba
Abstract The Okavango wetlands in north western Botswana are the most fire-prone environment in Botswana. Most of these fires are anthropogenic. The fires in this environment are thought to impact the environment negatively and therefore practices that are associated with extensive use of fire have been strongly criticized. Despite this, there has been little work done to understand how these fires impact the wetlands environment and its dynamics, especially the vegetation resources that are used by the local communities in the wetlands. The objective of the study was to identify fire spatial and temporal trends in relation to settlement distribution, through the use of remote sensing, socio-economic and phytosociological surveys. The fire history results show that geographically there has not been any significant change in vegetation structure and that in fact fires may have promoted biodiversity. The results of analysis show an overall variance on vegetation structure of 23% whereas the rest are unaccounted for. There is a strong association between settlements, ethnicities, literacy and fire occurrences. The most fire-prone areas are inhabited by communities that have used fire in the past for various resource use practices. [source]


Dry season habitat use by critically endangered white-shouldered ibis in northern Cambodia

ANIMAL CONSERVATION, Issue 1 2010
H. L. Wright
Abstract We present the first scientific study of white-shouldered ibis Pseudibis davisoni habitat preferences in dry dipterocarp forest. Foraging sites included seasonal pools, forest understorey grasslands and fallow rice fields, with terrestrial sites used more following rainfall. Habitat and anthropogenic effects in logistic models of foraging site selection were examined by multimodel inference and model averaging. White-shouldered ibis preferred pools with greater cover of short vegetation (<25 cm) and less of the boundary enclosed, and forest sites with greater cover of bare substrate and lower people encounter rate. At forest sites, livestock density was positively related to bare substrate extent and thus may improve suitability for foraging ibis. At pools, livestock removed tall vegetation between the early and late dry season indicating their importance in opening up foraging habitats after wet season growth. However, by the late dry season, pools with greater livestock density had less short vegetation, the habitat favoured by ibis. Conservation strategies for white-shouldered ibis must consider a range of habitats, not just seasonal wetlands, and should incorporate extensive grazing and associated burning practises of local communities. Further understanding of the effects of these practices on vegetation, prey abundance and prey availability are therefore needed for effective conservation of this species. This will also develop our understanding of potentially beneficial anthropogenic influences in tropical environments. [source]