Home About us Contact | |||
Sea Urchin Embryo (sea + urchin_embryo)
Selected AbstractsStructural Characterization of the Transient Amorphous Calcium Carbonate Precursor Phase in Sea Urchin Embryos,ADVANCED FUNCTIONAL MATERIALS, Issue 10 2006Y. Politi Abstract Sea urchin embryos form their calcitic spicular skeletons via a transient precursor phase composed of amorphous calcium carbonate (ACC). Transition of ACC to calcite in whole larvae and isolated spicules during development has been monitored using X-ray absorption spectroscopy (XAS). Remarkably, the changing nature of the mineral phase can clearly be monitored in the whole embryo samples. More detailed analyses of isolated spicules at different stages of development using both XAS and infrared spectroscopy demonstrate that the short-range order of the transient ACC phase resembles calcite, even though infrared spectra show that the spicules are mostly composed of an amorphous mineral phase. The coordination sphere is at first distorted but soon adopts the octahedral symmetry typical of calcite. Long-range lattice rearrangement follows to form the calcite single crystal of the mature spicule. These studies demonstrate the feasibility of real-time monitoring of mineralized-tissue development using XAS, including the structural characterization of transient amorphous phases at the atomic level. [source] Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryoDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2006Ekaterina Voronina An asymmetric fourth cell division in the sea urchin embryo results in formation of daughter cells, macromeres and micromeres, with distinct sizes and fates. Several lines of functional evidence presented here, including pharmacological interference and dominant negative protein expression, indicate that heterotrimeric G protein Gi and its interaction partner, activator of G-protein signaling (AGS), are necessary for this asymmetric cell division. Inhibition of Gi signaling by pertussis toxin interferes with micromere formation and leads to defects in embryogenesis. AGS was isolated in a yeast two-hybrid screen with G,i as bait and was expressed in embryos localized to the cell cortex at the time of asymmetric divisions. Introduction of exogenous dominant-negative AGS protein, containing only G-protein regulatory (GPR) domains, selectively prevented the asymmetric division in normal micromere formation. These results support the growing evidence that AGS is a universal regulator of asymmetric cell divisions in embryos. [source] Gastrulation in the sea urchin embryo: A model system for analyzing the morphogenesis of a monolayered epitheliumDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2004Tetsuya Kominami Processes of gastrulation in the sea urchin embryo have been intensively studied to reveal the mechanisms involved in the invagination of a monolayered epithelium. It is widely accepted that the invagination proceeds in two steps (primary and secondary invagination) until the archenteron reaches the apical plate, and that the constituent cells of the resulting archenteron are exclusively derived from the veg2 tier of blastomeres formed at the 60-cell stage. However, recent studies have shown that the recruitment of the archenteron cells lasts as late as the late prism stage, and some descendants of veg1 blastomeres are also recruited into the archenteron. In this review, we first illustrate the current outline of sea urchin gastrulation. Second, several factors, such as cytoskeletons, cell contact and extracellular matrix, will be discussed in relation to the cellular and mechanical basis of gastrulation. Third, differences in the manner of gastrulation among sea urchin species will be described; in some species, the archenteron does not elongate stepwise but continuously. In those embryos, bottle cells are scarcely observed, and the archenteron cells are not rearranged during invagination unlike in typical sea urchins. Attention will be also paid to some other factors, such as the turgor pressure of blastocoele and the force generated by blastocoele wall. These factors, in spite of their significance, have been neglected in the analysis of sea urchin gastrulation. Lastly, we will discuss how behavior of pigment cells defines the manner of gastrulation, because pigment cells recently turned out to be the bottle cells that trigger the initial inward bending of the vegetal plate. [source] Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryoDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2004Masato Kiyomoto In the sea urchin embryo, primary mesenchyme cells (PMC) are committed to produce the larval skeleton, although their behavior and skeleton production are influenced by signals from the embryonic environment. Results from our recent studies showed that perturbation of skeleton development, by interfering with ectoderm,extracellular matrix (ECM) interactions, is linked to a reduction in the gene expression of a transforming growth factor (TGF)-beta growth factor, Pl-univin, suggesting a reduction in the blastocoelic amounts of the protein and its putative involvement in signaling events. In the present study, we examined PMC competence to respond to environmental signals in a validated skeleton perturbation model in Paracentrotus lividus. We found that injection of blastocoelic fluid (BcF), obtained from normal embryos, into the blastocoelic cavity of skeleton-defective embryos rescues skeleton development. In addition, PMC from skeleton-defective embryos transplanted into normal or PMC-less blastula embryos are able to position in correct regions of the blastocoel and to engage spicule elongation and patterning. Taken together, these results demonstrate that PMC commitment to direct skeletogenesis is maintained in skeleton perturbed embryos and confirm the role played by inductive signals in regulating skeleton growth and shape. [source] Differential distribution of spicule matrix proteins in the sea urchin embryo skeletonDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2000Takashi Kitajima Spicule matrix proteins are the products of primary mesenchyme cells, and are present in calcite spicules of the sea urchin embryo. To study their possible roles in skeletal morphogenesis, monoclonal antibodies against SM50, SM30 and another spicule matrix protein (29 kDa) were obtained. The distribution of these proteins in the embryo skeleton was observed by immunofluorescent staining. In addition, their distribution inside the spicules was examined by a ,spicule blot' procedure, direct immunoblotting of proteins embedded in crystallized spicules. Our observations showed that SM50 and 29 kDa proteins were enriched both outside and inside the triradiate spicules of the gastrulae, and also existed in the corresponding portions of growing spicules in later embryos and micromere cultures. The straight extensions of the triradiate spicules and thickened portions of body rods in pluteus spicules were also rich in these proteins. The SM30 protein was only faintly detected along the surface of spicules. By examination using the spicule blot procedure, however, SM30 was clearly detectable inside the body rods and postoral rods. These results indicate that SM50 and 29 kDa proteins are concentrated in radially growing portions of the spicules (normal to the c-axis of calcite), while SM30 protein is in the longitudinally growing portions (parallel to the c-axis). Such differential distribution suggests the involvement of these proteins in calcite growth during the formation of three-dimensionally branched spicules. [source] Bipolar, anastral spindle development in artificially activated sea urchin eggsDEVELOPMENTAL DYNAMICS, Issue 5 2008John H. Henson Abstract The mitotic apparatus of the early sea urchin embryo is the archetype example of a centrosome-dominated, large aster spindle organized by means of the centriole of the fertilizing sperm. In this study, we tested the hypothesis that artificially activated sea urchin eggs possess the capacity to assemble the anastral, bipolar spindles present in many acentrosomal systems. Control fertilized Lytechinus pictus embryos and ammonia-activated eggs were immunolabeled for tubulin, centrosomal material, the spindle pole structuring protein NuMA and the mitotic kinesins MKLP1/Kinesin-6, Eg5/Kinesin-5, and KinI/Kinesin-13. Confocal imaging showed that a subset of ammonia-activated eggs contained bipolar "mini-spindles" that were anastral; displayed metaphase and anaphase-like stages; labeled for centrosomal material, NuMA, and the three mitotic kinesins; and were observed in living eggs using polarization optics. These results suggest that spindle structural and motor proteins have the ability to organize bipolar, anastral spindles in sea urchin eggs activated in the absence of the paternal centriole. Developmental Dynamics 237:1348-1358, 2008. © 2008 Wiley-Liss, Inc. [source] An evolutionary transition of vasa regulation in echinodermsEVOLUTION AND DEVELOPMENT, Issue 5 2009Celina E. Juliano SUMMARY Vasa, a DEAD box helicase, is a germline marker that may also function in multipotent cells. In the embryo of the sea urchin Strongylocentrotus purpuratus, Vasa protein is posttranscriptionally enriched in the small micromere lineage, which results from two asymmetric cleavage divisions early in development. The cells of this lineage are subsequently set aside during embryogenesis for use in constructing the adult rudiment. Although this mode of indirect development is prevalent among echinoderms, early asymmetric cleavage divisions are a derived feature in this phylum. The goal of this study is to explore how vasa is regulated in key members of the phylum with respect to the evolution of the micromere and small micromere lineages. We find that although striking similarities exist between the vasa mRNA expression patterns of several sea urchins and sea stars, the time frame of enriched protein expression differs significantly. These results suggest that a conserved mechanism of vasa regulation was shifted earlier in sea urchin embryogenesis with the derivation of micromeres. These data also shed light on the phenotype of a sea urchin embryo upon removal of the Vasa-positive micromeres, which appears to revert to a basal mechanism used by extant sea stars and pencil urchins to regulate Vasa protein accumulation. Furthermore, in all echinoderms tested here, Vasa protein and/or message is enriched in the larval coelomic pouches, the site of adult rudiment formation, thus suggesting a conserved role for vasa in undifferentiated multipotent cells set aside during embryogenesis for use in juvenile development. [source] On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryoEVOLUTION AND DEVELOPMENT, Issue 4 2004Albert J. Poustka Summary We identified a transcription factor of the onecut class in the sea urchin Strongylocentrotus purpuratus that represents an ortholog of the mammalian gene HNF6, the founding member of the onecut class of proteins. The isolated sea urchin gene, named SpOnecut, encodes a protein of 483 amino acids with one cut domain and a homeodomain. Phylogenetic analysis clearly places the sea urchin gene into this family, most closely related to the ascidian onecut gene HNF-6. Nevertheless, phylogenetic analysis reveals a difficult phylogeny indicating that certain members of the family evolve more rapidly than others and also that the cut domain and homeodomain evolve at a different pace. In fly, worm, ascidian, and teleost fish, the onecut genes isolated so far are exclusively expressed in cells of the central nervous system (CNS), whereas in mammals the two copies of the gene have acquired additional functions in liver and pancreas development. In the sea urchin embryo, expression is first detected in the emerging ciliary band at the late blastula stage. During the gastrula stage, expression is limited to the ciliary band. In the early pluteus stage, SpOnecut is expressed at the apical organ and the elongating arms but continues most prominently in the ciliary band. This is the first gene known that exclusively marks the ciliary band and therein the apical organ in a pluteus larva, whereas chordate orthologs execute essential functions in dorsal CNS development. The significance of this finding for the hypothesis that the ciliary bands and apical organs of the hypothetical "dipleurula"-like chordate ancestor and the chordate/vertebrate CNS are of common origin is discussed. [source] Cloning and characterization of cDNA for syndecan core protein in sea urchin embryosDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2000Kazuo Tomita The cDNA for the core protein of the heparan sulfate proteoglycan, syndecan, of embryos of the sea urchin Anthocidaris crassispina was cloned and characterized. Reverse transcription,polymerase chain reaction (RT-PCR) was used with total ribonucleic acid (RNA) from late gastrula stage embryos and degenerate primers for conserved regions of the core protein, to obtain a 0.1 kb PCR product. A late gastrula stage cDNA library was then screened using the PCR product as a probe. The clones obtained contained an open reading frame of 219 amino acid residues. The predicted product was 41.6% identical to mouse syndecan-1 in the region spanning the cytoplasmic and transmembrane domains. Northern analysis showed that the transcripts were present in unfertilized eggs and maximum expression was detected at the early gastrula stage. Syndecan mRNA was localized around the nuclei at the early cleavage stage, but was then found in the ectodermal cells of the gastrula embryos. Western blotting analysis using the antibody against the recombinant syndecan showed that the proteoglycan was present at a constant level from the unfertilized egg stage through to the pluteus larval stage. Immunostaining revealed that the protein was expressed on apical and basal surfaces of the epithelial wall in blastulae and gastrulae. [source] Changes in the activities of protein phosphatase type 1 and type 2A in sea urchin embryos during early developmentDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2000Manabu Kawamoto In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP-dependent protein kinase (A kinase), Ca2+/calmodulin-dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca2+/phospholipid-dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise. [source] Bauxite manufacturing residues from Gardanne (France) and Portovesme (Italy) exert different patterns of pollution and toxicity to sea urchin embryosENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2002Giovanni Pagano Abstract This study was designed to investigate the composition and toxicity of solid residues from bauxite manufacturing plants. Soil and dust samples were collected in the proximity of two bauxite plants (Gardanne, France, and Portovesme, Italy). Samples were analyzed for their content of some selected inorganic contaminants by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) either following acid digestion procedures or by seawater release of soluble components. Toxicity was tested by sea urchin bioassays to evaluate a set of toxicity endpoints including acute embryotoxicity, developmental defects, changes in sperm fertilization success, transmissible damage from sperm to the offspring, and cytogenetic abnormalities. Inorganic analysis showed two distinct sets of inorganic contaminants in Gardanne versus Portovesme, including Al, Cr, Cu, Fe, Mn, Pb, Ti, and Zn; sample composition (seawater-soluble cotaminants) and toxicity showed a noteworthy association. The most severe toxicity to embryogenesis and to sperm fertilization success was exerted by some Portovesme samples (0.03,0.5% w/v), with a significant association between toxicity and dose-related seawater release of Zn, Pb, and Mn. Seawater extraction of a toxic dust sample (G20) from the Gardanne factory showed increasing seawater release of Al, Fe, and Mn; the G20 sample, at the level of 0.5%, affected both developing sea urchin embryos and sperm (offspring quality). Soil samples around the Gardanne factory showed the highest frequency of toxic soil sites eastward from the factory. The present data point to solid deposition from bauxite plants as a potential subject of environmental health concern. The results suggest that extraction methods for evaluating the toxicity of complex mixtures should be based on the environmental availability of mixture components. The differences in sample toxicity among the tested sites, however, suggest possible site-to-site variability in geochemical and/or technological parameters. [source] Differential cellular compartmentalization of the nuclear receptor SpSHR2 splicing variants in early sea urchin embryosMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2001Aikaterini Kontrogianni-Konstantopoulos Abstract SpSHR2 is a member of the nuclear receptor superfamily, expressed in embryos, larvae, and adult tissues of sea urchin. During embryonic development, two receptor isoforms are produced via alternative splicing. One exhibits the typical structure of nuclear receptors (SpSHR2-full length), whereas the other is missing the entire LBD (SpSHR2-splice variant). DNA-constructs encoding these isoforms and two additional in vitro generated deletion mutants were engineered in an expression vector carrying the myc-tag. Expression of the tagged isoforms in S. purpuratus embryos showed that the exogenous SpSHR2 full-length protein displays a similar subcellular localization as the endogenous receptor. In early cleavage stages (4-cells), the full-length isoform is predominantly localized in the nucleus, whereas two cell divisions later (16-cells) protein accumulations are detected in both the nucleus and cytoplasm. To the contrary, the SpSHR2-splice variant is confined in the embryonic nuclei both at 4- and 16-cell stage embryos. Analysis of the intracellular distribution of two receptor mutants, one having a deletion within the DBD (,P) and the other a truncation of the C-terminal F-domain (,F), revealed that ,P is localized similarly to full-length receptor, whereas ,F is maintained in the nucleus, similar to the SpSHR2 splice variant. Investigation of the DNA binding and dimerization properties of the two SpSHR2 isoforms demonstrated that they recognize and bind to a DR1-element as monomers, whereas ,P does not bind DNA and ,F binds to DR1 poorly. These results suggest that the receptor's putative LBD is responsible for the differential subcellular localization of the two natural SpSHR2-isoforms in early development. Mol. Reprod. Dev. 60: 147,157, 2001. © 2001 Wiley-Liss, Inc. [source] Embryonic pattern formation without morphogensBIOESSAYS, Issue 5 2008Hamid Bolouri One of the earliest and most-fundamental pattern- formation events in embryonic development is endoderm and mesoderm specification. In sea urchin embryos, this process begins with blimp1 and wnt8 gene expression at the vegetal pole as soon as embryonic transcription begins. Shortly afterwards, wnt8/blimp1 expression spreads to the adjacent ring of mesoderm progenitor cells and is extinguished in the vegetal-most cells. A little later, the ring of wnt8/blimp1 activity moves out of the mesoderm progenitors and into the neighboring endoderm cells. Remarkably, this moving ring of gene expression has now been shown to be controlled entirely by transcriptional cis -regulatory logic.1. BioEssays 30:412,417, 2008. © 2008 Wiley Periodicals, Inc. [source] The modulator is a constitutive enhancer of a developmentally regulated sea urchin histone H2A geneBIOESSAYS, Issue 9 2002Giovanni Spinelli Going back to the late 1970s and early 1980s, we trace the Xenopus oocyte microinjection experiments that led to the emergence of the concept of "modulator". The finding that the modulator could transactivate transcription from far upstream and in either orientation suggested that a new genetic element, different from the classical prokaryotic promoter sequences, had been discovered. This particular enhancer transactivates transcription of the sea urchin early (,) histone H2A gene which is regulated in early sea urchin development. We summarise the data from sea urchin microinjection experiments that confirm and extend the results obtained with Xenopus oocytes. We conclude that the H2A enhancer is bipartite, is located approx. 100 bp upstream of the TATAAATA box in the H2A gene of two sea urchin species and enhances transcription when placed at a position far upstream or far downstream of the gene unless an insulator intervenes between enhancer and promoter. Evidence from microinjection experiments with sea urchin embryos suggests that the developmental control of H2A expression resides not with the enhancer, which is constitutively active, but with a striking chromatin structure with two positioned nucleosomes near the 3, end of the gene. Within this structure, there is an insulator element. BioEssays 24:850,857, 2002. © 2002 Wiley Periodicals, Inc. [source] |