Sea Temperature (sea + temperature)

Distribution by Scientific Domains


Selected Abstracts


Groundfish species diversity and assemblage structure in Icelandic waters during recent years of warming

FISHERIES OCEANOGRAPHY, Issue 1 2010
LILJA STEFANSDOTTIR
Abstract Elevated ocean temperatures have been predicted to lead to a poleward shift in the latitudinal distribution ranges of fish species. Different responses of fish species to increased temperatures might lead to changes in assemblage structure and local species richness. In this study, the assemblage structure and diversity of groundfish in Icelandic waters were examined using data from a standardized groundfish survey conducted annually in 1996,2007. We used hierarchical cluster analysis to define assemblages in two time periods and canonical correspondence analysis to explore the relationships between the assemblages and temperature, depth, latitude, longitude and year. We further used two estimates of diversity, species richness and the Shannon index. Four major species assemblages were identified. Assemblages in the hydrographically stable deep waters north of the country were consistent during the study, while assemblage structure in the more variable shallow waters underwent some changes. For this period of generally increasing sea temperature, the canonical correspondence analysis also revealed a shift towards species representative of warmer temperatures. Diversity was shown to be highly variable both temporally and spatially, and also to vary with depth and temperature. Species richness increased with temperature and time southwest of the country, but decreased northeast of the country. The different trends detected between the northern and southern areas illustrate the importance of performing analyses at the most appropriate scale. [source]


Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea

FISHERIES OCEANOGRAPHY, Issue 1 2008
SYLVAIN BONHOMMEAU
Abstract European eel decline is now widely observed and involves a large number of factors such as overfishing, pollution, habitat loss, dam construction, river obstruction, parasitism and environmental changes. In the present study, we analyzed the influence of environmental conditions in the Sargasso Sea and Atlantic ocean circulation on European glass eel recruitment success. Over a recent 11-yr period, we showed a strong positive correlation between an original index of glass eel recruitment and primary production (PP) in eel spawning area. Moreover, PP was negatively correlated with temperature in the Sargasso Sea. Therefore, we used sea temperature as an inverse proxy of marine production. A close negative relationship has been found over the last four decades between long-term fluctuations in recruitment and in sea temperature. These findings were reinforced by the detection of a regime shift in sea temperature that preceded the start of the decline in glass eel recruitment in the early 1980s. By contrast, variations in integrative indices measuring ocean circulation, i.e. latitude and strength of the Gulf Stream, did not seem to explain variations in glass eel recruitment. Our results support the hypothesis of a strong bottom-up control of leptocephali survival and growth by PP in the Sargasso Sea on short and long time scales. We argue that sea warming in the eel spawning area since the early 1980s has modified marine production and eventually affected the survival rate of European eels at early life stages. [source]


Temperature-dependent stock-recruitment model for walleye pollock (Theragra chalcogramma) around northern Japan

FISHERIES OCEANOGRAPHY, Issue 6 2007
TETSUICHIRO FUNAMOTO
Abstract Changes in fish year-class strength have been attributed to year-to-year variability in environmental conditions and spawning stock biomass (SSB). In particular, sea temperature has been shown to be linked to fish recruitment. In the present study, I examined the relationship between sea surface temperature (SST), SSB and recruitment for two stocks of walleye pollock (Theragra chalcogramma) around northern Japan [Japanese Pacific stock (JPS) and northern Japan Sea stock (JSS)] using a temperature-dependent stock-recruitment model (TDSRM). The recruitment fluctuation of JPS was successfully reproduced by the TDSRM with February and April SSTs, and February SST was a better environmental predictor than April SST. In addition, the JPS recruitment was positively related to February SST and negatively to April SST. The JSS recruitment modeled by the TDSRM incorporating February SST was also consistent with the observation, whereas the relationship between recruitment and February SST was negative, that is the opposite trend to JPS. These findings suggest that SST in February is important as a predictor of recruitment for both stocks, and that higher and lower SSTs in February act favorably on the recruitment of JPS and JSS respectively. Furthermore, Ricker-type TDSRM was not selected for either of the stocks, suggesting that the strong density-dependent effect as in the Ricker model does not exist for JPS and JSS. I formulate hypotheses to explain the links between SST and recruitment, and note that these relationships should be considered in any future attempts to understand the recruitment dynamics of JPS and JSS. [source]


Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock

FISHERIES OCEANOGRAPHY, Issue 3 2006
GEIR OTTERSEN
Abstract Atlantic cod (Gadus morhua) is one of the commercially most important fish species in the North Atlantic and plays a central role in several ecosystems. Fishing pressure has been heavy over a prolonged period and the recent decades have shown dramatic decline in abundance of many stocks. The Arcto-Norwegian (or North-east Arctic) cod stock in the Barents Sea is now the largest stock of Atlantic cod. Recruitment to this stock has varied extensively during the last 60 yr. There is evidence for fluctuations in climate, particularly sea temperature, being a main cause for this variability, higher temperatures being favourable for survival throughout the critical early life stages. Our studies of time series present compelling evidence for a strengthening of the climate,cod recruitment link during the last decades. We suggest this is an effect of the age and length composition of the spawning stock having changed distinctly. The age of the average spawner has decreased by more than 3 yr from between 10 and 11 in the late 1940s to 7,8 in the 1990s, average length from just above 90 cm to around 80 cm. The number of age classes contributing to the spawning stock has also decreased, while the number of length groups present increased slightly. Significant decrease in age of spawners has frequently been described for other heavily fished stocks worldwide. We therefore find it likely that the proposed mechanism of increased influence of climate on recruitment through changes in the spawning stock age and size composition is of a general nature and might be found in other systems. [source]


Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change

GLOBAL CHANGE BIOLOGY, Issue 11 2010
D. K. A. BARNES
Abstract The relevance of laboratory experiments in predicting effects of climate change has been questioned, especially in Antarctica where sea temperatures are remarkably stable. Laboratory studies of Southern Ocean marine animal capacities to survive increasing temperature mainly utilize rapid temperature elevations, 100 ×,10 000 × faster than sea temperature is predicted to rise. However, due to small-scale temperature fluctuations these studies may be crucial for understanding colonization patterns and predicting survival particularly through interactions between thermal tolerance and migration. The colonization of disjunct shelves around Antarctica by larvae or adult drift requires crossing or exposure to, rapid temperature changes of up to 2,4 °C over days to weeks. Analyses of responses to warming at varying rates of temperature change in the laboratory allow better predictions of the potential species have for colonizing disjunct shelf areas (such as the Scotia Arc). Inhabiting greater diversities of localities increases the geographic and thermal range species experience. We suggest a strong link between short-term temperature tolerance, environmental range and prospects for surviving changing environments. [source]


Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale

GLOBAL CHANGE BIOLOGY, Issue 2 2010
MARTIN J. GENNER
Abstract Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long-term changes in species abundance and body-size distributions. In this study, we investigated long-term (1911,2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger-growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller-growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size-dependent responses of species to long-term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size-selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna. [source]


Modelling past and present geographical distribution of the marine gastropod Patella rustica as a tool for exploring responses to environmental change

GLOBAL CHANGE BIOLOGY, Issue 10 2007
FERNANDO P. LIMA
Abstract A climate envelope approach was used to model the distributions of the intertidal gastropod Patella rustica, to test the robustness of forecast responses to climate change. The model incorporated variables that were likely to determine the abundance and the northern range limit of this species in the NE Atlantic. The model was built using classification and regression tree analysis (CART) trained with historical distribution data from the mid 1950s and a set of corresponding climatic and oceanographic variables. Results indicated air and sea temperature, in particular during the reproductive and settlement periods, as the main determinants of the Atlantic distribution of P. rustica. The model was subsequently fed with contemporary climatic data and its output was compared with the current distribution and abundance of P. rustica, assessed during a 2002,2003 survey. The model correctly hindcasted the recent collapse of a distributional gap in northern Portugal, as well as an increase in abundance at locations within its range. The predicted northward expansion of the northern range limit did not occur because the absence of the species was confirmed in a survey encompassing the whole Atlantic French coast up to Brest. Stretches of unsuitable habitat too long to be overcome by dispersal are the likely mechanism controlling the northern limit of the distribution of this intertidal species. [source]


Relevance of incubation temperature for Vibrio salmonicida vaccine production

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2002
D.J. Colquhoun
Aims:,To investigate the relationships between water temperature, bacterial growth, virulence and antigen expression in Vibrio salmonicida, the causal agent of cold water vibriosis in Atlantic salmon (Salmo salar L.). Methods and Results:,The significance of sea temperature was investigated using historical clinical and oceanographic data. An upper threshold for disease of approx. 10°C was established. The effects of culture temperature and media type on bacterial growth were studied on solid and in liquid media. The highest rates of cell division were identified at 15°C on solid media and 10°C in liquid media. Outer membrane protein (OMP) expression and serological response in Atlantic salmon were studied using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Western blotting and enzyme-linked immunosorbent assay. A novel 76-kDa OMP produced in unshaken cultures at 10°C was not found to stimulate a specific humoral response. Conclusions:,Diagnostic agar plate-based incubation of suspected V. salmonicida should be carried out at 15°C. High yield broth cultures for vaccine production should be incubated at 10°C or lower. Significance and Impact of the Study:,This study is, to the best of our knowledge, the first to identify different optimal temperatures in a bacterial species cultured on physically different types of media. The evidence presented suggests that V. salmonicida and possibly other bacteria destined for vaccine use in poikilothermic organisms should be cultured at temperatures consistent with that at which disease occurs. [source]


Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change

GLOBAL CHANGE BIOLOGY, Issue 11 2010
D. K. A. BARNES
Abstract The relevance of laboratory experiments in predicting effects of climate change has been questioned, especially in Antarctica where sea temperatures are remarkably stable. Laboratory studies of Southern Ocean marine animal capacities to survive increasing temperature mainly utilize rapid temperature elevations, 100 ×,10 000 × faster than sea temperature is predicted to rise. However, due to small-scale temperature fluctuations these studies may be crucial for understanding colonization patterns and predicting survival particularly through interactions between thermal tolerance and migration. The colonization of disjunct shelves around Antarctica by larvae or adult drift requires crossing or exposure to, rapid temperature changes of up to 2,4 °C over days to weeks. Analyses of responses to warming at varying rates of temperature change in the laboratory allow better predictions of the potential species have for colonizing disjunct shelf areas (such as the Scotia Arc). Inhabiting greater diversities of localities increases the geographic and thermal range species experience. We suggest a strong link between short-term temperature tolerance, environmental range and prospects for surviving changing environments. [source]


Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale

GLOBAL CHANGE BIOLOGY, Issue 2 2010
MARTIN J. GENNER
Abstract Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long-term changes in species abundance and body-size distributions. In this study, we investigated long-term (1911,2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger-growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller-growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size-dependent responses of species to long-term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size-selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna. [source]


Elevated metabolic costs while resting on water in a surface feeder: the Black-legged Kittiwake Rissa tridactyla

IBIS, Issue 1 2007
ELIZABETH M. HUMPHREYS
Measurements of the energy costs of individual behaviours provide insights into how animals trade-off resource allocation and energy acquisition decisions. The energetic costs while resting on water are poorly known for seabirds but could comprise a substantial proportion of their daily energy expenditure. We measured the cost of resting on water in Black-legged Kittiwakes Rissa tridactyla, a species which does not fly during the night and for which estimating energy expenditure while resting on the water is therefore important. Their resting metabolic rate on water at 12.5 °C was at least 40% higher compared with resting at the same temperature in air. This indicates that, at comparable temperatures, metabolic costs are elevated for birds resting at sea compared with on land. We argue that Kittiwakes meet much of this extra thermoregulatory demand by dedicated metabolic activity. During the winter months, their costs are likely to be even higher owing to lower sea temperatures. Accordingly, we suggest that migration to milder latitudes, following breeding, will provide enhanced benefits, particularly to seabirds such as Kittiwakes which rest on the sea surface during darkness. [source]


Critical considerations for future action during the second commitment period: A small islands' perspective

NATURAL RESOURCES FORUM, Issue 2 2007
Leonard Nurse
Abstract If the objective of the United Nations Framework Convention on Climate Change (UNFCCC) is to be achieved, Parties must commit themselves to meeting meaningful long-term targets that, based on current knowledge, would minimize the possibility of irreversible climate change. Current indications are that a global mean temperature rise in excess of 2,3 °C would enhance the risk of destabilizing the climate system as we know it, and possibly lead to catastrophic change such as a shutdown of the deep ocean circulation, and the disintegration of the West Arctic Ice Sheet. Observations have shown that for many small island developing States (SIDS), life-sustaining ecosystems such as coral reefs, already living near the limit of thermal tolerance, are highly climate-sensitive, and can suffer severe damage from exposure to sea temperatures as low as 1 °C above the seasonal maximum. Other natural systems (e.g., mangroves) are similarly susceptible to relatively low temperature increases, coupled with small increments of sea level rise. Economic and social sectors, including agriculture and human health, face similar challenges from the likely impacts of projected climate change. In light of known thresholds, this paper presents the view that SIDS should seek support for a temperature cap not exceeding 1.5,2.0 °C above the pre-industrial mean. It is argued that a less stringent post-Kyoto target would frustrate achievement of the UNFCCC objective. The view is expressed that all countries which emit significant amounts of greenhouse gases should commit to binding reduction targets in the second commitment period, but that targets for developing countries should be less stringent than those agreed for developed countries. Such an arrangement would be faithful to the principles of equity and would ensure that the right of Parties to attain developed country status would not be abrogated. [source]