Home About us Contact | |||
Sea Surface Temperature (sea + surface_temperature)
Kinds of Sea Surface Temperature Terms modified by Sea Surface Temperature Selected AbstractsPredictions of future climate change in the caribbean region using global general circulation modelsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2007Moises E. Angeles Abstract Since the 1800s the global average CO2 mixing ratio has increased and has been related to increases in surface air temperature (0.6 ± 0.2 °C) and variations in precipitation patterns among other weather and climatic variables. The Small Island Developing States (SIDS), according to the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), are likely to be among the most seriously impacted regions on Earth by global climate changes. In this work, three climate change scenarios are investigated using the Parallel Climate Model (PCM) to study the impact of the global anthropogenic CO2 concentration increases on the Caribbean climate. A climatological analysis of the Caribbean seasonal climate variation was conducted employing the National Center for Environmental Prediction (NCEP) reanalysis data, the Xie,Arkin precipitation and the Reynolds,Smith Sea Surface Temperature (SST) observed data. The PCM is first evaluated to determine its ability to predict the present time Caribbean climatology. The PCM tends to under predict the SSTs, which along with the cold advection controls the rainfall variability. This seems to be a main source of bias considering the low model performance to predict rainfall activity over the Central and southern Caribbean. Future predictions indicate that feedback processes involving evolution of SST, cloud formation, and solar radiative interactions affect the rainfall annual variability simulated by PCM from 1996 to 2098. At the same time two large-scale indices, the Southern Oscillation Index (SOI) and the North Atlantic Oscillation (NAO) are strongly related with this rainfall annual variability. A future climatology from 2041 to 2058 is selected to observe the future Caribbean condition simulated by the PCM. It shows, during this climatology range, a future warming of approximately 1 °C (SSTs) along with an increase in the rain production during the Caribbean wet seasons (early and late rainfall seasons). Although the vertical wind shear is strengthened, it typically remains lower than 8 m/s, which along with SST > 26.5 °C provides favorable conditions for possible future increases in tropical storm frequency. Copyright © 2006 Royal Meteorological Society [source] Frequent monitoring of temperature: an essential requirement for site selection in bivalve aquaculture in tropical,temperate transition zonesAQUACULTURE RESEARCH, Issue 10 2006María Teresa Sicard Abstract Frequent monitoring of temperature (FMT) for over 1 year at two aquaculture sites in the western Baja California peninsula was analysed in terms of hourly, daily and monthly variability, and with this information, temperature-change indices were calculated. These data were contrasted against a long-term series from a global database (Extended Reconstruction of Sea Surface Temperature (ERSST)) to evaluate whether these could substitute for FMT. The compatibility of species requirements with the thermal conditions was evaluated by comparing the temperature frequency distributions from the two FMTs, with the optimum and lethal temperature information available on five bivalve species of aquacultural interest. We concluded that there was no correlation between ERSST and FMT because the former underestimates the amplitude of real temperature fluctuations and exhibits a different pattern of variation during the year. Therefore, FMT was needed for a correct selection of an aquaculture site for bivalves. The FMT indicated high temperature variability at both sites studied on different time scales, with the site located at lower latitude (Rancho Bueno) warmer and with a higher variability than Laguna Manuela. Contrasting these results with optimum and lethal temperature values of bivalve species, it was possible to find the ideal site, for temperature, for culturing the species, taking into account the variability associated with large-scale phenomena. [source] The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere,ATMOSPHERIC SCIENCE LETTERS, Issue 3 2010Dr Chunzai Wang Abstract In this study, we show that the record-breaking cold temperatures from North America to Europe and Asia during the period of 28 December 2009 to 13 January 2010 are associated with extremely negative values of the North Atlantic Oscillation (NAO) index, which produce northerly surface wind anomalies and cause the southward advection of the cold Arctic air. Corresponded to longer-term variations of Pacific and Atlantic Sea Surface Temperatures (SSTs), the downward trend of the NAO has occurred since the early 1990s. It is speculated that if the downward trend of the NAO continues, more frequent cold outbreaks and heavy snow are likely in the coming years. Published 2010 by John Wiley and Sons, Ltd. [source] Long-term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920sHYDROLOGICAL PROCESSES, Issue 22 2009José A. Marengo Abstract Rainfall and river indices for both the northern and southern Amazon were used to identify and explore long-term climate variability on the region. From a statistical analysis of the hydrometeorological series, it is concluded that no systematic unidirectional long-term trends towards drier or wetter conditions have been identified since the 1920s. The rainfall and river series showing variability at inter-annual scales linked to El Niño Southern Oscillation was detected in rainfall in the northern Amazon. It has a low-frequency variability with a peak at , 30 years identified in both rainfall and river series in the Amazon. The presence of cycles rather than a trend is characteristic of rainfall in the Amazon. These cycles are real indicators of decadal and multi-decadal variations in hydrology for both sides of the basin. Sea-level pressure (SLP) gradients between tropics and sub topics were explored in order to explain variability in the hydrometeorology of the basin. Sea surface temperature (SST) gradients inside the tropical Atlantic and between the tropical Atlantic and the sub-tropical Atlantic have been assessed in the context of changes in rainfall in the Amazon, as compared to northern Argentina. Trends in SSTs in the subtropical Atlantic are linked to changes in rainfall and circulation in northern Argentina, and they seem to be related to multi-decadal variations of rainfall in the Amazon. Copyright © 2009 John Wiley & Sons, Ltd. [source] Early 20th century Arctic warming in retrospectINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2010Kevin R. Wood Abstract The major early 20th century climatic fluctuation (,1920,1940) has been the subject of scientific enquiry from the time it was detected in the 1920s. The papers of scientists who studied the event first-hand have faded into obscurity but their insights are relevant today. We review this event through a rediscovery of early research and new assessments of the instrumental record. Much of the inter-annual to decadal scale variability in surface air temperature (SAT) anomaly patterns and related ecosystem effects in the Arctic and elsewhere can be attributed to the superposition of leading modes of variability in the atmospheric circulation. Meridional circulation patterns were an important factor in the high latitudes of the North Atlantic during the early climatic fluctuation. Sea surface temperature (SST) anomalies that appeared during this period were congruent with low-frequency variability in the climate system but were themselves most likely the result of anomalous forcing by the atmosphere. The high-resolution data necessary to verify this hypothesis are lacking, but the consistency of multiple lines of evidence provides strong support. Our findings indicate that early climatic fluctuation is best interpreted as a large but random climate excursion imposed on top of the steadily rising global mean temperature associated with anthropogenic forcing. Copyright © 2009 Royal Meteorological Society [source] Influence of assimilated SST on regional atmospheric simulation: A case of a cold-air outbreak over the Japan SeaATMOSPHERIC SCIENCE LETTERS, Issue 1 2008Masaru Yamamoto Abstract Sea surface temperature (SST) assimilated using an ocean circulation model is used for the atmospheric simulation of a cold-air outbreak over the Japan Sea. The upward surface-turbulent heat fluxes are significantly influenced by the high-resolution SST structure resulting from mesoscale oceanic eddies. A strong deceleration of the outbreak due to local convective activity arises in a coastal area when using the assimilated SST data, in good agreement with observations; however, this feature is not observed when using the interpolated SST. In general, the use of assimilated temperature does improve regional atmospheric simulations. Copyright © 2008 Royal Meteorological Society [source] Determining prey distribution patterns from stomach-contents of satellite-tracked high-predators of the Southern OceanECOGRAPHY, Issue 2 2006J. C. Xavier The distribution of many cephalopod, crustacean and fish species in the Southern Ocean, and adjacent waters, is poorly known, particularly during times of the year when research surveys are rare. Analysing the stomach samples of satellite-tracked higher predators has been advocated as a potential method by which such gaps in knowledge can be filled. We examined the viability of this approach through monitoring wandering albatrosses Diomedea exulans at their colony on Bird Island, South Georgia (54°S, 38°W) over the winters (May,July) of 1999 and 2000. At this time, these birds foraged in up to three different water-masses, the Antarctic zone (AZ), the sub-Antarctic zone (SAZ) and the sub-Tropical zone (STZ), which we defined by contemporaneous satellite images of sea surface temperature. A probabilistic model was applied to the tracking and diet data collected from 38 birds to construct a large-scale map of where various prey were captured. Robustness/sensitivity analyses were used to test model assumptions on the time spent foraging and relative catch efficiencies and to evaluate potential biases associated with the model. We were able to predict the distributions of a wide number of cephalopod, crustacean of fish species. We also discovered some of the limitations to using this type of data and proposed ways to rectify these problems. [source] Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole?ECOGRAPHY, Issue 2 2003Claudio Valdovinos The most ubiquitous and well recognized diversity pattern at large spatial scales is the latitudinal increase in species richness near the equator and decline towards the poles. Although several exceptions to this pattern have been documented, shallow water mollusks, the most specious group of marine invertebrates, are the epitome of the monotonic decline in species diversity toward higher latitudes along the Pacific and Atlantic coasts of North America. Here we analyze the geographic diversity of 629 mollusk species along the Pacific South American shelf. Our analyses are based on the most complete database of invertebrates assembled for this region of the world, consisting of latitudinal ranges of over 95% of all described mollusks between 10° and 55°S. Along this coast, mollusk diversity did not follow the typical latitudinal trend. The number of species remained constant and relatively low at intermediate latitudes and sharply increased toward higher latitudes, south of 42°S. This trend was explained by changes in shelf area, but not by sea surface temperature, unlike the pattern documented for Northern Hemisphere mollusks. Direct sampling of soft bottom communities along the gradient suggests that regional trends in species richness are produced by increased alpha diversity, and not only by artifacts produced by the increase in sampling area. We hypothesize that increased shelf area south of 42°S, geographic isolation produced by divergence of major oceanic currents, and the existence of refugia during glaciations, enabled species diversification. Radiation could have been limited by narrow continental shelves between 10°,42°. Asymmetries in latitudinal diversity trends between hemispheres show that there is not a single general factor determining large-scale diversity patterns. [source] Prediction of sea surface temperature from the global historical climatology network dataENVIRONMETRICS, Issue 3 2004Samuel S. P. Shen Abstract This article describes a spatial prediction method that predicts the monthly sea surface temperature (SST) anomaly field from the land only data. The land data are from the Global Historical Climatology Network (GHCN). The prediction period is 1880,1999 and the prediction ocean domain extends from 60°S to 60°N with a spatial resolution 5°×5°. The prediction method is a regression over the basis of empirical orthogonal functions (EOFs). The EOFs are computed from the following data sets: (a) the Climate Prediction Center's optimally interpolated sea surface temperature (OI/SST) data (1982,1999); (b) the National Climatic Data Center's blended product of land-surface air temperature (1992,1999) produced from combining the Special Satellite Microwave Imager and GHCN; and (c) the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis data (1982,1999). The optimal prediction method minimizes the first- M -mode mean square error between the true and predicted anomalies over both land and ocean. In the optimization process, the data errors of the GHCN boxes are used, and their contribution to the prediction error is taken into account. The area-averaged root mean square error of prediction is calculated. Numerical experiments demonstrate that this EOF prediction method can accurately recover the global SST anomalies during some circulation patterns and add value to the SST bias correction in the early history of SST observations and the validation of general circulation models. Our results show that (i) the land only data can accurately predict the SST anomaly in the El Nino months when the temperature anomaly structure has very large correlation scales, and (ii) the predictions for La Nina, neutral, or transient months require more EOF modes because of the presence of the small scale structures in the anomaly field. Copyright © 2004 John Wiley & Sons, Ltd. [source] Seasonal and inter-annual variations in the abundance and biomass of Neocalanus plumchrus in continental slope waters off OregonFISHERIES OCEANOGRAPHY, Issue 5 2010HUI LIU Abstract Seasonal and inter-annual variability in the abundance and biomass of copepodid stages of the sub-arctic oceanic copepod, Neocalanus plumchrus, was studied during the January,May growth season, using an 11-yr time series of zooplankton samples collected over the upper 100 m of the water column. Abundance and biomass peaks occur in March/April. Abundance and biomass of N. plumchrus were significantly negatively correlated with sea surface temperature and significantly positively correlated with sea surface chlorophyll a, salinity, and density above the pycnocline. The seasonal integrated abundance and biomass of N. plumchrus declined during the warm years (2003,05), and increased during the cold years (2006,08). The date when 50% of the population had passed through stage C5 was significantly negatively correlated with temperature , earlier in warm years and later in cold years. In 3 yr (2003, 2007 and 2008), a second cohort appeared in mid-May, as indicated by the presence of stages C1 and C2 in the samples. Unusually high abundances of N. plumchrus in the spring of 2007 and 2008 were associated with cool ocean temperatures and an early spring transition in the NCC ecosystem, suggesting that the NCC ecosystem has returned to a cold phase. We discuss the merits of a hypothesis that the N. plumchrus population observed off Oregon is a local population as opposed to one that is expatriated from the Gulf of Alaska. [source] The role of oceanographic conditions and plankton availability in larval fish assemblages off the Catalan coast (NW Mediterranean)FISHERIES OCEANOGRAPHY, Issue 3 2010M. PILAR OLIVAR Abstract In the northwestern Mediterranean, most fish species reproduce in early summer and fewer in the autumn mixing period. This study analyses and compares larval fish assemblages (LFA) in both seasons, and is the first attempt to characterize LFA structure for the autumn period. We analyze horizontal and vertical distribution of fish larvae and the micro- and mesozooplankton biomass and abundance of the main zooplankton groups. The oceanographic situation was analyzed through the study of data from CTD, N,-Shuttle and ADCP surveys. LFA were determined by ordination analyses based on larval abundance, and the relationships between larval assemblages and environmental variables were investigated through canonical correspondence analysis. The importance of some hydrographic variables (temperature, salinity and stability of the water column), current fields (along-shelf and across-shelf transport) and the abundance of zooplankton are discussed as important factors shaping the structure of larval assemblages. In early summer, LFA were mainly structured by a combination of bathymetry and trophic components, although sea surface temperature also played a role in shaping the horizontal larval distributions. In autumn, trophic variables were the main factors influencing the shelf-dwelling species assemblage. Larvae of oceanic species, on the other hand, were not related to trophic variables but were more affected by current fields. [source] Spatio-temporal distribution of albacore (Thunnus alalunga) catches in the northeastern Atlantic: relationship with the thermal environmentFISHERIES OCEANOGRAPHY, Issue 2 2010Y. SAGARMINAGA Abstract When the spring seasonal warming starts, North Atlantic albacore (Thunnus alalunga) juveniles and pre-adults perform a trophic migration to the northeastern Atlantic, to the Bay of Biscay and to the southeast of Ireland. During this migration, they are exploited by Spanish trolling and baitboat fleets. The present study analyzes the relationship between the albacore spatio-temporal distribution and the thermal environment. For this approach, several analyses have been performed on a database including fishing logbooks and sea surface temperature (SST) images, covering the period between 1987 and 2003. SST values and the SST gradients at the catch locations have been statistically compared to broader surrounding areas to test whether the thermal environment determines the spatial distribution of albacore. General additive models (GAM) have been used also to evaluate the relative importance of environmental variables and fleet behaviour. The results obtained show that, although juvenile albacore catch locations are affected by fleet dynamics, there is a close spatial and temporal relationship with the seasonal evolution of a statistically significant preferential SST window (16,18°C). However, differences have been identified between the relationship of albacore with SST within the Bay of Biscay in July and August (higher temperature). Such differences are found also in the spatial distribution of the catch locations; these reflect clearly the presence of two groups, differentiated after the third week of the fishing campaign at the end of June. The analysis undertaken relating the distribution of North Atlantic albacore juveniles with thermal gradients did not provide any evidence of a relationship between these catch locations and the nearby occurrence of thermal gradients. [source] Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of TaiwanFISHERIES OCEANOGRAPHY, Issue 2 2009CHIH-HAO HSIEH Abstract We investigated environmental effects on larval anchovy fluctuations (based on CPUE from 1980 to 2000) in the waters off southwestern Taiwan using advanced time series analyses, including the state-space approach to remove seasonality, wavelet analysis to investigate transient relationships, and stationary bootstrap to test correlation between time series. For large-scale environmental effects, we used the Southern Oscillation Index (SOI) to represent the El Niño Southern Oscillation (ENSO); for local hydrographic conditions, we used sea surface temperature (SST), river runoff, and mixing conditions. Whereas the anchovy catch consisted of a northern species (Engraulis japonicus) and two southern species (Encrasicholina heteroloba and Encrasicholina punctifer), the magnitude of the anchovy catch appeared to be mainly determined by the strength of Eng. japonicus (Japanese anchovy). The main factor that caused the interannual variation of anchovy CPUE might change through time. The CPUE showed a negative correlation with combination of water temperature and river runoff before 1987 and a positive correlation with river runoff after 1988. Whereas a significant negative correlation between CPUE and ENSOs existed, this correlation was driven completely by the low-frequency ENSO events and explained only 10% of the variance. Several previous studies on this population emphasized that the fluctuations of larval anchovy abundance were determined by local SST. Our analyses indicated that such a correlation was transient and simply reflected ENSO signals. Recent advances in physical oceanography around Taiwan showed that the ENSOs reduced the strength of the Asian monsoon and thus weakened the China Coastal Current toward Taiwan. The decline of larval anchovy during ENSO may be due to reduced China Coastal Current, which is important in facilitating the spawning migration of the Japanese anchovy. [source] Temperature-dependent stock-recruitment model for walleye pollock (Theragra chalcogramma) around northern JapanFISHERIES OCEANOGRAPHY, Issue 6 2007TETSUICHIRO FUNAMOTO Abstract Changes in fish year-class strength have been attributed to year-to-year variability in environmental conditions and spawning stock biomass (SSB). In particular, sea temperature has been shown to be linked to fish recruitment. In the present study, I examined the relationship between sea surface temperature (SST), SSB and recruitment for two stocks of walleye pollock (Theragra chalcogramma) around northern Japan [Japanese Pacific stock (JPS) and northern Japan Sea stock (JSS)] using a temperature-dependent stock-recruitment model (TDSRM). The recruitment fluctuation of JPS was successfully reproduced by the TDSRM with February and April SSTs, and February SST was a better environmental predictor than April SST. In addition, the JPS recruitment was positively related to February SST and negatively to April SST. The JSS recruitment modeled by the TDSRM incorporating February SST was also consistent with the observation, whereas the relationship between recruitment and February SST was negative, that is the opposite trend to JPS. These findings suggest that SST in February is important as a predictor of recruitment for both stocks, and that higher and lower SSTs in February act favorably on the recruitment of JPS and JSS respectively. Furthermore, Ricker-type TDSRM was not selected for either of the stocks, suggesting that the strong density-dependent effect as in the Ricker model does not exist for JPS and JSS. I formulate hypotheses to explain the links between SST and recruitment, and note that these relationships should be considered in any future attempts to understand the recruitment dynamics of JPS and JSS. [source] Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific OceanFISHERIES OCEANOGRAPHY, Issue 5 2007TAKASHI KITAGAWA Abstract Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time-series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light-based longitude and sea surface temperature-based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid-winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11,14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon. [source] Long-term trends in fish recruitment in the north-east Atlantic related to climate changeFISHERIES OCEANOGRAPHY, Issue 4 2007THOMAS BRUNEL Abstract This study investigates the temporal correspondence between the main patterns of recruitment variations among north-east Atlantic exploited fish populations and large-scale climate and temperature indices. It is of primary importance to know what changes in fish stock productivity can be expected in response to climate change, to design appropriate management strategies. The dominant patterns of recruitment variation were extracted using a standardized principal component analysis (PCA). The first principal component (PC) was a long-term decline, with a stepwise change occurring in 1987. A majority of Baltic Sea, North Sea, west of Scotland and Irish Sea populations, especially the gadoids, have followed this decreasing trend. On the contrary, some herring populations and the populations of boreal ecosystems have followed an opposite increasing trend. The dominant signal in north-east Atlantic sea surface temperature, also extracted by a PCA, was highly correlated with the increase in the Northern Hemisphere Temperature anomaly, which is considered to be an index of global warming. The first component of recruitment was inversely correlated with these changes in regional and global temperature. The second PC of recruitment was a decadal scale oscillation, which was not correlated with climate indicators. The analysis of correlations between population recruitment and local temperature also indicated that the dominant pattern of recruitment variation may be related to an effect of global warming. The influence of fishing on recruitment, via its effect on the spawning stock biomass (SSB), was also investigated by the analysis of correlations between fishing mortality, SSB and recruitment. Results indicate that fishing can be another factor explaining recruitment trends, probably acting in combination with the effect of climate, but cannot explain alone the patterns of recruitment variation found here. [source] Trends in NE Atlantic landings (southern Portugal): identifying the relative importance of fisheries and environmental variablesFISHERIES OCEANOGRAPHY, Issue 3 2005KARIM ERZINI Abstract Time series of commercial landings from the Algarve (southern Portugal) from 1982 to 1999 were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These techniques were used to identify trends and explore the relationships between the response variables (annual landings of 12 species) and explanatory variables [sea surface temperature, rainfall, an upwelling index, Guadiana river (south-east Portugal) flow, the North Atlantic oscillation, the number of licensed fishing vessels and the number of commercial fishermen]. Landings were more highly correlated with non-lagged environmental variables and in particular with Guadiana river flow. Both techniques gave coherent results, with the most important trend being a steady decline over time. A DFA model with two explanatory variables (Guadiana river flow and number of fishermen) and three common trends (smoothing functions over time) gave good fits to 10 of the 12 species. Results of other models indicated that river flow is the more important explanatory variable in this model. Changes in the mean flow and discharge regime of the Guadiana river resulting from the construction of the Alqueva dam, completed in 2002, are therefore likely to have a significant and deleterious impact on Algarve fisheries landings. [source] Modeling the influence of oceanic-climatic changes on the dynamics of Pacific saury in the northwestern Pacific using a life cycle modelFISHERIES OCEANOGRAPHY, Issue 2004YONGJUN TIAN Abstract A life cycle model for Pacific saury (Cololabis saira) was developed to clarify the possible causes of interannual and decadal variability in its abundance. In the model, the population of saury is composed of two spawning cohorts: one spawned in the Kuroshio region during autumn,winter and the other spawned in the Kuroshio-Oyashio Transition Zone during winter,spring. The life cycle of saury was divided into six stages: namely egg, larval, juvenile, young, immature and adult stages. The life cycle model combines growth, survival, fishing and reproductive processes, in which the effects of sea surface temperature (SST) in the Kuroshio region and El Niño-Southern Oscillation (ENSO) events on the winter-spawning cohorts, the effects of SST in the Oyashio region on the spring-spawning cohorts, and the effects of fishing on the two spawning cohorts are taken into account. Results of basic modeling, in which environments are assumed stable and the stock is affected by fishing only, shows that the interannual fluctuations in the abundance are small and could hardly explain the observed large annual changes in abundance. On the contrary, results of modeling incorporating the effects of oceanic-climatic changes corresponded well with actual interannual-decadal variations in abundance. These results suggest the following environmental effects: (1) SST in the Kuroshio region affects decadal changes in abundance; (2) ENSO events influence the survival of the winter spawning cohort and result in large interannual variations in the abundance. It is concluded that large-scale climatic and oceanic changes strongly affect the abundance of saury. [source] Differing body size between the autumn and the winter,spring cohorts of neon flying squid (Ommastrephes bartramii) related to the oceanographic regime in the North Pacific: a hypothesisFISHERIES OCEANOGRAPHY, Issue 5 2004Taro Ichii Abstract The neon flying squid (Ommastrephes bartramii), which is the target of an important North Pacific fishery, is comprised of an autumn and winter,spring cohort. During summer, there is a clear separation of mantle length (ML) between the autumn (ML range: 38,46 cm) and the winter,spring cohorts (ML range: 16,28 cm) despite their apparently contiguous hatching periods. We examined oceanic conditions associated with spawning/nursery and northward migration habitats of the two different-sized cohorts. The seasonal meridional movement of the sea surface temperature (SST) range at which spawning is thought to occur (21,25°C) indicates that the spawning ground occurs farther north during autumn (28,34°N) than winter,spring (20,28°N). The autumn spawning ground coincides with the Subtropical Frontal Zone (STFZ), characterized by enhanced productivity in winter because of its close proximity to the Transition Zone Chlorophyll Front (TZCF), which move south to the STFZ from the Subarctic Boundary. Hence this area is thought to become a food-rich nursery ground in winter. The winter,spring spawning ground, on the other hand, coincides with the Subtropical Domain, which is less productive throughout the year. Furthermore, as the TZCF and SST front migrate northward in spring and summer, the autumn cohort has the advantage of being in the SST front and productive area north of the chlorophyll front, whereas the winter,spring cohort remains to the south in a less productive area. Thus, the autumn cohort can utilize a food-rich habitat from winter through summer, which, we hypothesize, causes its members to grow larger than those in the winter,spring cohort in summer. [source] Variability in the spawning habitat of Pacific sardine (Sardinops sagax) off southern and central CaliforniaFISHERIES OCEANOGRAPHY, Issue 6 2003Ronald J. Lynn Abstract The spatial pattern of sardine spawning as revealed by the presence of sardine eggs is examined in relation to sea surface temperature (SST) and mean volume backscatter strength (MVBS) measured by a 150 kHz acoustic Doppler current profiler (ADCP) during four spring surveys off central and southern California in 1996,99. Studies in other regions have shown that MVBS provides an excellent measure of zooplankton distribution and density. Zooplankton biomass as measured by survey net tows correlates well with concurrently measured MVBS. The high along-track resolution of egg counts provided by the Continuous Underway Fish Egg Sampler (CUFES) is a good match to the ADCP-based data. Large interannual differences in the pattern and density of sardine eggs are clearly related to the concurrently observed patterns of surface temperature and MVBS. The strong spatial relationship between sardine eggs and MVBS is particularly evident because of the large contrast in zooplankton biomass between the 1998 El Niño and 1999 La Niña. The inshore distribution of sardine spawning appears to be limited by the low temperatures of freshly upwelled waters, although the value of the limiting temperature varies between years. Often there is an abrupt offshore decrease in MVBS that is coincident with the offshore boundary of sardine eggs. Possible reasons for this association of sardine eggs and high zooplankton biomass include an evolved strategy that promotes improved opportunity of an adequate food supply for subsequent larval development, and/or adult nutrient requirements for serial spawning. Hence, the distribution of these parameters can be used as an aid for delineating the boundaries of sardine spawning habitat. [source] The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western AtlanticFISHERIES OCEANOGRAPHY, Issue 1 2003H. A. Andrade Abstract The spatio-temporal distribution of tuna fishing effort has been related to oceanographic circulation and features in several seas of the world. Understanding the relationship between environmental variables and fishery resource dynamics is important for management decisions and to improve fishery yields. The relationship between sea temperature variability and the pole-and-line skipjack tuna (Katsuwonus pelamis) fishery in the south-western Atlantic Ocean was investigated in this work. Data from logbooks, satellite images (sea surface temperature), and oceanographic surveys were used in the analyses. Skipjack are caught in warm tropical waters of the Brazil Current (BC). The north,south displacement of fishing effort was strongly associated to seasonal variation of the surface temperature, which was coupled to the tropical BC flow. Oceanographic fronts from autumn to spring and a shallow thermocline in summer probably induces the aggregation of skipjack schools over the shelfbreak, favouring fishing operations. Hypotheses are proposed to explain the relationship between peaks of fishing events and the presence of topographic peculiarities of the shelfbreak. [source] Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north-east Pacific OceanFISHERIES OCEANOGRAPHY, Issue 4 2002Franz J. Mueter We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon (Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink (O. gorbuscha), chum (O. keta), and sockeye (O. nerka) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400,800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks. [source] Mid-latitude wind stress: the energy source for climatic shifts in the North Pacific OceanFISHERIES OCEANOGRAPHY, Issue 3 2000Parrish Analyses of atmospheric observations in the North Pacific demonstrate extensive decadal-scale variations in the mid-latitude winter surface wind stress. In the decade after 1976 winter, eastward wind stress doubled over a broad area in the central North Pacific and the winter zero wind stress curl line was displaced about 6° southward. This resulted in increased southward Ekman transport, increased oceanic upwelling, and increased turbulent mixing as well as a southward expansion of the area of surface divergence. All these factors contributed to a decadal winter cold anomaly along the subtropical side of the North Pacific Current. In summer the cold anomaly extended eastward, almost reaching the coast of Oregon. The increased gradient in wind stress curl and southward displacement of the zero curl line also resulted in an increase in total North Pacific Current transport, primarily on the Equator side of this Current. Thus, surface water entering the California Current was of more subtropical origin in the post-1976 decade. Southward (upwelling favourable) wind stress and sea surface temperature (SST) in the area off San Francisco exhibit at least three different types of decadal departures from mean conditions. In association with the 1976 climatic shift, marine fishery production in the Oyashio, California and Alaska Currents altered dramatically, suggesting that these natural environmental variations significantly alter the long-term yields of major North Pacific fisheries. [source] Predicting population consequences of ocean climate change for an ecosystem sentinel, the seabird Cassin's aukletGLOBAL CHANGE BIOLOGY, Issue 7 2010SHAYE G. WOLF Abstract Forecasting the ecological effects of climate change on marine species is critical for informing greenhouse gas mitigation targets and developing marine conservation strategies that remain effective and increase species' resilience under changing climate conditions. Highly productive coastal upwelling systems are predicted to experience substantial effects from climate change, making them priorities for ecological forecasting. We used a population modeling approach to examine the consequences of ocean climate change in the California Current upwelling ecosystem on the population growth rate of the planktivorous seabird Cassin's auklet (Ptychoramphus aleuticus), a demographically sensitive indicator of marine climate change. We use future climate projections for sea surface temperature and upwelling intensity from a regional climate model to forecast changes in the population growth rate of the auklet population at the important Farallon Island colony in central California. Our study projected that the auklet population growth rate will experience an absolute decline of 11,45% by the end of the century, placing this population on a trajectory toward extinction. In addition, future changes in upwelling intensity and timing of peak upwelling are likely to vary across auklet foraging regions in the California Current Ecosystem (CCE), producing a mosaic of climate conditions and ecological impacts across the auklet range. Overall, the Farallon Island Cassin's auklet population has been declining during recent decades, and ocean climate change in this century under a mid-level emissions scenario is projected to accelerate this decline, leading toward population extinction. Because our study species has proven to be a sensitive indicator of oceanographic conditions in the CCE and a powerful predictor of the abundance of other important predators (i.e. salmon), the significant impacts we predicted for the Cassin's auklet provide insights into the consequences that ocean climate change may have for other plankton predators in this system. [source] Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmonGLOBAL CHANGE BIOLOGY, Issue 5 2008CHRISTOPHER D. TODD Abstract Ocean climate impacts on survivorship and growth of Atlantic salmon are complex, but still poorly understood. Stock abundances have declined over the past three decades and 1992,2006 has seen widespread sea surface temperature (SST) warming of the NE Atlantic, including the foraging areas exploited by salmon of southern European origin. Salmon cease feeding on return migration, and here we express the final growth condition of year-classes of one-sea winter adults at, or just before, freshwater re-entry as the predicted weight at standard length. Two independent 14-year time series for a single river stock and for mixed, multiple stocks revealed almost identical temporal patterns in growth condition variation, and an overall trend decrease of 11,14% over the past decade. Growth condition has fallen as SST anomaly has risen, and for each year-class the midwinter (January) SST anomalies they experienced at sea correlated negatively with their final condition on migratory return during the subsequent summer months. Stored lipids are crucial for survival and for the prespawning provisioning of eggs in freshwater, and we show that under-weight individuals have disproportionately low reserves. The poorest condition fish (,30% under-weight) returned with lipid stores reduced by ,80%. This study concurs with previous analyses of other North Atlantic top consumers (e.g. somatic condition of tuna, reproductive failure of seabirds) showing evidence of major, recent climate-driven changes in the eastern North Atlantic pelagic ecosystem, and the likely importance of bottom-up control processes. Because salmon abundances presently remain at historical lows, fecundity of recent year-classes will have been increasingly compromised. Measures of year-class growth condition should therefore be incorporated in the analysis and setting of numerical spawning escapements for threatened stocks, and conservation limits should be revised upwards conservatively during periods of excessive ocean climate warming. [source] Climate,growth relationships of tropical tree species in West Africa and their potential for climate reconstructionGLOBAL CHANGE BIOLOGY, Issue 7 2006JOCHEN SCHÖNGART Abstract Most tropical regions are facing historical difficulties of generating biologically reconstructed long-term climate records. Dendrochronology (tree-ring studies) is a powerful tool to develop high-resolution and exactly dated proxies for climate reconstruction. Owing to the seasonal variation in rainfall we expected the formation of annual tree rings in the wood of tropical West African tree species. In the central-western part of Benin (upper Ouémé catchment, UOC) and in northeastern Ivory Coast (Comoé National Park, CNP) we investigated the relationship between climate (precipitation, sea surface temperature (SST)) and tree rings and show their potential for climate reconstruction. Wood samples of almost 200 trees belonging to six species in the UOC and CNP served to develop climate-sensitive ring-width chronologies using standard dendrochronological techniques. The relationship between local precipitation, monthly SST anomalies in the Gulf of Guinea, El Niño- Southern Oscillation (ENSO) and ring-width indices was performed by simple regression analyses, two sample tests and cross-spectral analysis. A low-pass filter was used to highlight the decadal variability in rainfall of the UOC site. All tree species showed significant relationships with annual precipitation proving the existence of annual tree rings. ENSO signals could not be detected in the ring-width patterns. For legume tree species at the UOC site significant relationships could be found between SST anomalies in the Gulf of Guinea indicating correlations at periods of 5.1,4.1 and 2.3 years. Our findings accurately show the relationship between tree growth, local precipitation and SST anomalies in the Gulf of Guinea possibly associated with worldwide SST patterns. A master chronology enabled the reconstruction of the annual precipitation in the UOC to the year 1840. Time series analysis suggest increasing arid conditions during the last 160 years which may have large impacts on the hydrological cycles and consequently on the ecosystem dynamics and the development of socio-economic cultures and sectors in the Guinea-Congolian/Sudanian region. [source] Impact of CO2 concentration changes on the biosphere-atmosphere system of West AfricaGLOBAL CHANGE BIOLOGY, Issue 12 2002GUILING WANG Abstract Vegetation dynamics plays a critical role in causing the decadal variability of precipitation over the Sahel region of West Africa. However, the potential impact of changes in CO2 concentration on vegetation dynamics and precipitation variability of this region has not been addressed by previous studies. In this paper, we explore the role of CO2 concentration in the regional climate system of West Africa using a zonally symmetric, synchronously coupled biosphere-atmosphere model. We first document the response of precipitation and vegetation to incremental changes of CO2 concentration; the impact of CO2 concentration on the variability of the regional biosphere-atmosphere system is then addressed using the second half of the twentieth century as an example. An increase of CO2 concentration causes the regional biosphere-atmosphere system to become wetter and greener, with the radiative effect of CO2 and improved plant-water relation dominant in the Sahelian grassland region and the direct enhancement of leaf carbon assimilation dominant in the tree-covered region to the south. Driven by the observed sea surface temperature (SST) of the tropical Atlantic Ocean during the period 1950,97 and with CO2 concentration prescribed at a pre-industrial level 300ppmv, the model simulates a persistent Sahel drought during the period of 1960s,1990s. The simulated drought takes place in the form of a transition of the coupled biosphere-atmosphere system from a wet/green regime in the 1950s to a dry/barren regime after the 1960s. This climate transition is triggered by SST forcing and materialized through vegetation-climate interactions. The same SST forcing does not produce such a persistent drought when a constant modern CO2 concentration of 350ppmv is specified, indicating that the biosphere-atmosphere system at higher CO2 level is more resilient to drought-inducing external forcings. This finding suggests that the regional climate in Sahel, which tends to alternate between dry and wet spells, may experience longer (or more frequent) wet episodes and shorter (or less frequent) dry episodes in the future than in the past. Our study has significant implications regarding the impact of climate change on regional socio-economic development. [source] Human modification of the landscape and surface climate in the next fifty yearsGLOBAL CHANGE BIOLOGY, Issue 5 2002R. S. Defries Abstract Human modification of the landscape potentially affects exchanges of energy and water between the terrestrial biosphere and the atmosphere. This study develops a possible scenario for land cover in the year 2050 based on results from the IMAGE 2 (Integrated Model to Assess the Greenhouse Effect) model, which projects land-cover changes in response to demographic and economic activity. We use the land-cover scenario as a surface boundary condition in a biophysically-based land-surface model coupled to a general circulation model for a 15-years simulation with prescribed sea surface temperature and compare with a control run using current land cover. To assess the sensitivity of climate to anthropogenic land-cover change relative to the sensitivity to decadal-scale interannual variations in vegetation density, we also carry out two additional simulations using observed normalized difference vegetation index (NDVI) from relatively low (1982,83) and high (1989,90) years to describe the seasonal phenology of the vegetation. In the past several centuries, large-scale land-cover change occurred primarily in temperate latitudes through conversion of forests and grassland to highly productive cropland and pasture. Several studies in the literature indicate that past changes in surface climate resulting from this conversion had a cooling effect owing to changes in vegetation morphology (increased albedo). In contrast, this study indicates that future land-cover change, likely to occur predominantly in the tropics and subtropics, has a warming effect governed by physiological rather than morphological mechanisms. The physiological mechanism is to reduce carbon assimilation and consequently latent relative to sensible heat flux resulting in surface temperature increases up to 2 °C and drier hydrologic conditions in locations where land cover was altered in the experiment. In addition, in contrast to an observed decrease in diurnal temperature range (DTR) over land expected with greenhouse warming, results here suggest that future land-cover conversion in tropics could increase the DTR resulting from decreased evaporative cooling during the daytime. For grid cells with altered land cover, the sensitivity of surface temperature to future anthropogenic land-cover change is generally within the range induced by decadal-scale interannual variability in vegetation density in temperate latitudes but up to 1.5 °C warmer in the tropics. [source] El Niño Southern Oscillation link to the Blue Nile River Basin hydrologyHYDROLOGICAL PROCESSES, Issue 26 2009Wossenu Abtew Abstract The objective of this study is to evaluate the relationships of El Niño Southern Oscillation (ENSO) indices and the Blue Nile River Basin hydrology using a new approach that tracks cumulative ENSO indices. The results of this study can be applied for water resources management decision making to mitigate drought or flood impacts with a lead time of at least few months. ENSO tracking and forecasting is relatively easier than predicting hydrology. ENSO teleconnections to the Blue Nile River Basin hydrology were evaluated using spatial average basin rainfall and Blue Nile flows at Bahir Dar, Ethiopia. The ENSO indices were sea surface temperature (SST) anomalies in region Niño 3·4 and the Southern Oscillation Index (SOI). The analysis indicates that the Upper Blue Nile Basin rainfall and flows are teleconnected to the ENSO indices. Based on event correspondence and correlation analysis, high rainfall and high flows are likely to occur during La Niña years and dry years are likely to occur during El Niño years at a confidence level of 90%. Extreme dry and wet years are very likely to correspond with ENSO events as given above. The great Ethiopian famine of 1888,1892 corresponds to one of the strongest El Niño years, 1888. The recent drought years in Ethiopia correspond to strong El Niño years and wet years correspond to La Niña years. In this paper, a new approach is proposed on how to classify the strength of ENSO events by tracking consecutive monthly events through a year. A cumulative SST index value of ,5 and cumulative SOI value of , ,7 indicate strong El Niño. A cumulative SST index value of ,,5 and cumulative SOI index of ,7 indicate strong La Niña. Copyright © 2009 John Wiley & Sons, Ltd. [source] Hydroclimatic teleconnection between global sea surface temperature and rainfall over India at subdivisional monthly scaleHYDROLOGICAL PROCESSES, Issue 14 2007Rajib Maity Abstract It is well established that sea surface temperature (SST) plays a significant role in the hydrologic cycle in which precipitation is the most important part. In this study, the influence of SST on Indian subdivisional monthly rainfall is investigated. Both spatial and temporal influences are investigated. The most influencing regions of sea surface are identified for different subdivisions and for different overlapping seasons in the year. The relative importance of SST, land surface temperature (LST) and ocean,land temperature contrast (OLTC) and their variation from subdivision to subdivision and from season to season are also studied. It is observed that LST does not show much similarity with rainfall series, but, in general, OLTC shows relatively higher influence in the pre-monsoon and early monsoon periods, whereas SST plays a more important role in late- and post-monsoon periods. The influence of OLTC is seen to be mostly confined to the Indian Ocean region, whereas the effect of SST indicates the climatic teleconnection between Indian regional rainfall and climate indices in Pacific and Atlantic Oceans. Copyright © 2006 John Wiley & Sons, Ltd. [source] |