Sea Ice (sea + ice)

Distribution by Scientific Domains


Selected Abstracts


A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea

BOREAS, Issue 4 2002
CHRISTOPHER J. A. BIRKS
Core MD95-2011 was taken from the eastern Vøring Plateau, near the Norwegian coast. The section between 250 and 750 cm covers the time period from 13 000 to 2700 cal. yr BP (the Lateglacial and much of the Holocene). Samples at 5 cm intervals were analysed for fossil diatoms. A data-set of 139 modern sea-surface diatom samples was related to contemporary sea-surface temperatures (SSTs) using two different numerical methods. The resulting transfer functions were used to reconstruct past sea-surface temperatures from the fossil diatom assemblages. After the cold Younger Dryas with summer SSTs about 6°C, temperatures warmed rapidly to about 13°C. One of the fluctuations in the earliest Holocene can be related to the Pre-Boreal Oscillation, but SSTs were generally unstable until about 9700 cal. yr BP. Evidence from diatom concentration and magnetic susceptibility suggests a change and stabilization of water currents associated with the final melting of the Scandinavian Ice Sheet at c. 8100 cal. yr BP. A period of maximum warmth between 9700 and 6700 cal. yr BP had SSTs 3,5°C warmer than at present. Temperatures cooled gradually until c. 3000 cal. yr BP, and then rose slightly around 2750 cal. yr BP. The varimax factors derived from the Imbrie & Kipp method for sea-surface-temperature reconstructions can be interpreted as water-masses. They show a dominance of Arctic Waters and Sea Ice during the Younger Dryas. The North Atlantic current increased rapidly in strength during the early Holocene, resulting in warmer conditions than previously. Since about 7250 cal. yr BP, Norwegian Atlantic Water gradually replaced the North Atlantic Water, and this, in combination with decreasing summer insolation, led to a gradual cooling of the sea surface. Terrestrial systems in Norway and Iceland responded to this cooling and the increased supply of moisture by renewed glaciation. Periods of glacial advance can be correlated with cool oscillations in the SST reconstructions. By comparison with records of SSTs from other sites in the Norwegian Sea, spatial and temporal changes in patterns of ocean water-masses are reconstructed, to reveal a complex system of feedbacks and influences on the climate of the North Atlantic and Norway. [source]


A synthesis of biological and physical processes affecting the feeding environment of larval walleye pollock (Theragra chalcogramma) in the eastern Bering Sea

FISHERIES OCEANOGRAPHY, Issue 2 2000
Napp
Biological and physical phenomena that affect conditions for larval survival and eventual recruitment differ in the oceanic and shelf regions. In the oceanic region, eddies are a common feature. While their genesis is not well known, eddies have unique biophysical characteristics and occur with such regularity that they likely affect larval survival. High concentrations of larval pollock often are associated with eddies. Some eddies are transported onto the shelf, thereby providing larvae to the Outer Shelf Domain. Advection, rather than local production, dominated the observed springtime increase in chlorophyll (often a correlate of larval food) in the oceanic region. Over two-thirds of the south-eastern shelf, eddies are absent and other phenomena are important. Sea ice is a feature of the shelf region: its interannual variability (time of arrival, persistence, and areal extent) affects developmental rate of larvae, timing of the phytoplankton bloom (and potentially the match/mismatch of larvae and prey), and abundance and distribution of juvenile pollock. In the oceanic region, interannual variation in food for first-feeding pollock larvae is determined by advection; in the shelf region, it is the coupled dynamics of the atmosphere,ice,ocean system. [source]


Melting out of sea ice causes greater photosynthetic stress in algae than freezing in,

JOURNAL OF PHYCOLOGY, Issue 5 2007
Peter J. Ralph
Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea-ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence-induction kinetics. Sea-ice algae exhibited the least photosynthetic stress when maintained in 35, and 51, salinity, whereas 16, 21, and 65, treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea-ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast-induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea-ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing. [source]


Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2010
Brian Eddie
Summary Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice. [source]


Distribution of minke whales in the Bellingshausen and Amundsen Seas (60°W,120°W), with special reference to environmental/physiographic variables

FISHERIES OCEANOGRAPHY, Issue 3 2000
Fujio Kasamatsu
The relationship between the distribution of minke whales (Balaenoptera acutorostrata) in the Bellingshausen and Amundsen Seas (longitude between 60°W and 120°W), and environmental and physiographic variables (sea-surface temperature, sea-ice extension, and sea-floor-slope type), was studied to determine whether these environmental and physical factors affect the distribution and density of minke whales. The analysis was based on sightings data obtained from the 1989/90 and 1982/83 IWC/IDCR cruises. The mean sea-surface temperatures for comparable areas were significantly higher in 1989/90 (2.04°C) than in 1982/83 (1.12°C), and the area where the sea-surface temperature was greater than 1°C in the 1989/90 study was approximately twice that of the 1982/83 study. Additionally, during the surveys, the extent of the sea ice in 1989/90 was less than that in 1982/83, with the mean ice edge about 92.6 km (50 nautical miles; 1 nautical mile ,1.852 km) farther south in 1989/90 than in 1982/83. This is consistent with the sea ice extent observed in winter, when the sea ice extent was less in 1989 than in 1982. The distribution of minke whales was substantially different between the two surveys, with the density and abundance of minke whales being greater in 1982/83 than in 1989/90. The warmer sea-surface temperatures, fewer cold-water intrusions, and the smaller extent of sea ice in 1989/90 may be related to the difference in distribution of minke whales from 1982/83, possibly owing to the shift in availability of prey. [source]


LATE-GLACIAL GLACIER EVENTS IN SOUTHERNMOST SOUTH AMERICA: A BLEND OF ,NORTHERN' AND 'SOUTHERN' HEMISPHERIC CLIMATIC SIGNALS?

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2 2005
D.E. SUGDEN
ABSTRACT. This paper examines new geomorphological, chronological and modelling data on glacier fluctuations in southernmost South America in latitudes 46,55°S during the last glacial,interglacial transition. Establishing leads and lags between the northern and southern hemispheres and between southern mid-latitudes and Antarctica is key to an appreciation of the mechanisms and resilience of global climate. This is particularly important in the southern hemisphere where there is a paucity of empirical data. The overall structure of the last glacial cycle in Patagonia has a northern hemisphere signal. Glaciers reached or approached their Last Glacial Maxima on two or more occasions at 25,23 ka (calendar) and there was a third less extensive advance at 17.5 ka. Deglaciation occurred in two steps at 17.5 ka and at 11.4 ka. This structure is the same as that recognized in the northern hemisphere and taking place in spite of glacier advances occurring at a time of high southern hemisphere summer insolation and deglaciation at a time of decreasing summer insolation. The implication is that at orbital time scales the,northern' signal dominates any southern hemisphere signal. During deglaciation, at a millennial scale, the glacier fluctuations mirror an antiphase 'southern' climatic signal as revealed in Antarctic ice cores. There is a glacier advance coincident with the Antarctic Cold Reversal at 15.3,12.2 ka. Furthermore, deglaciation begins in the middle of the Younger Dryas. The implication is that, during the last glacial,interglacial transition, southernmost South America was under the influence of sea surface temperatures, sea ice and southern westerlies responding to conditions in the 'southern' Antarctic domain. Such asynchrony may reflect a situation whereby, during deglaciation, the world is more sensitized to fluctuations in the oceanic thermohaline circulation, perhaps related to the bipolar seesaw, than at orbital timescales. [source]


Sedimentary and crustal structure from the Ellesmere Island and Greenland continental shelves onto the Lomonosov Ridge, Arctic Ocean

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2010
H. Ruth Jackson
SUMMARY On the northern passive margin of Ellesmere Island and Greenland, two long wide-angle seismic reflection/refraction (WAR) profiles and a short vertical incident reflection profile were acquired. The WAR seismic source was explosives and the receivers were vertical geophones placed on the sea ice. A 440 km long North-South profile that crossed the shelf, a bathymetric trough and onto the Lomonosov Ridge was completed. In addition, a 110 km long profile along the trough was completed. P -wave velocity models were created by forward and inverse modelling. On the shelf modelling indicates a 12 km deep sedimentary basin consisting of three layers with velocities of 2.1,2.2, 3.1,3.2 and 4.3,5.2 km s,1. Between the 3.1,3.2 km s,1 and 4.3,5.2 km s,1 layers there is a velocity discontinuity that dips seaward, consistent with a regional unconformity. The 4.3,5.2 km s,1 layer is interpreted to be Palaeozoic to Mesozoic age strata, based on local and regional geological constraints. Beneath these layers, velocities of 5.4,5.9 km s,1 are correlated with metasedimentary rocks that outcrop along the coast. These four layers continue from the shelf onto the Lomonosov Ridge. On the Ridge, the bathymetric contours define a plateau 220 km across. The plateau is a basement high, confirmed by short reflection profiles and the velocities of 5.9,6.5 km s,1. Radial magnetic anomalies emanate from the plateau indicating the volcanic nature of this feature. A lower crustal velocity of 6.2,6.7 km s,1, within the range identified on the Lomonosov Ridge near the Pole and typical of rifted continental crust, is interpreted along the entire line. The Moho, based on the WAR data, has significant relief from 17 to 27 km that is confirmed by gravity modelling and consistent with the regional tectonics. In the trough, Moho shallows eastward from a maximum depth of 19,16 km. No indication of oceanic crust was found in the bathymetric trough. [source]


Contrasting population changes in sympatric penguin species in association with climate warming

GLOBAL CHANGE BIOLOGY, Issue 3 2006
JAUME FORCADA
Abstract Climate warming and associated sea ice reductions in Antarctica have modified habitat conditions for some species. These include the congeneric Adélie, chinstrap and gentoo penguins, which now demonstrate remarkable population responses to regional warming. However, inconsistencies in the direction of population changes between species at different study sites complicate the understanding of causal processes. Here, we show that at the South Orkney Islands where the three species breed sympatrically, the less ice-adapted gentoo penguins increased significantly in numbers over the last 26 years, whereas chinstrap and Adélie penguins both declined. These trends occurred in parallel with regional long-term warming and significant reduction in sea ice extent. Periodical warm events, with teleconnections to the tropical Pacific, caused cycles in sea ice leading to reduced prey biomass, and simultaneous interannual population decreases in the three penguin species. With the loss of sea ice, Adélie penguins were less buffered against the environment, their numbers fluctuated greatly and their population response was strong and linear. Chinstrap penguins, considered to be better adapted to ice-free conditions, were affected by discrete events of locally increased ice cover, but showed less variable, nonlinear responses to sea ice loss. Gentoo penguins were temporarily affected by negative anomalies in regional sea ice, but persistent sea ice reductions were likely to increase their available niche, which is likely to be substantially segregated from that of their more abundant congeners. Thus, the regional consequences of global climate perturbations on the sea ice phenology affect the marine ecosystem, with repercussions for penguin food supply and competition for resources. Ultimately, variability in penguin populations with warming reflects the local balance between penguin adaptation to ice conditions and trophic-mediated changes cascading from global climate forcing. [source]


Development of a historical ice database for the study of climate change in Canada

HYDROLOGICAL PROCESSES, Issue 18 2002
Frédéric Lenormand
Abstract The Canadian government has been compiling various observations on freshwater and coastal sea ice conditions for many years. However, the records are not easily accessible and are dispersed within different government departments. Given this, a major effort was undertaken in order to gather all available observations into a common database,the Canadian Ice Database (CID). This database will respond to the needs for climate monitoring in Canada, the validation and improvement of numerical ice models and the development of new remote-sensing methods. Indeed, several studies have shown that freshwater ice and sea ice are good proxy indicators of climate variability and change. The first version of CID contains in situ observations from 757 sites distributed across Canada, which were originally kept on digital or paper records at the Meteorological Service of Canada Headquarters and the Canadian Ice Service (CIS). The CID holds 63 546 records covering the period from ice season 1822,23 to 2000,01. An analysis of the database allows one to trace the temporal evolution of the ice networks. The freeze-up/break-up network of 2000,01 only represents 4% of what it was in 1985,86. A drastic decline of the ice thickness and the snow on ice network is also observable. In 1997,98, it represented only 10% of the network that existed in 1984,85. The major budget cuts in Canadian government agencies during the late 1980s and the 1990s offer the most plausible explanation for the drastic decline in the ice observation networks. Weekly ice coverage determination on large lakes from satellite imagery by the CIS and the national volunteer ice monitoring program, IceWatch, may provide a means of reviving, at least, the freeze-up/break-up network. Copyright © 2002 John Wiley & Sons, Ltd. [source]


An analysis of cloud observations from Vernadsky, Antarctica

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2010
Amélie Kirchgäßner
Abstract This paper presents results of a combined analysis of cloud observations made at the Antarctic base Faraday/Vernadsky between 1960 and 2005 and sea ice concentration from the HadISST1 data set. The annual total cloud cover has increased significantly during this period with the strongest and most significant positive trend found in winter, and positive tendencies observable in all seasons. This trend is associated with a decrease in sea ice concentration in the area of the Western Antarctic Peninsula. Though the observed sea ice reduction is actually larger and more significant in summer and autumn, there is actually a significant relation between total cloud cover and sea ice concentration only in winter. The increase in the total cloud cover is neither reflected in the low cloud amount nor in the number of records for low, medium or high level clouds. It is therefore thought that the increase in the total cloud cover is caused by an increase in the amount of medium and/or high level clouds. Instead, records for the low cloud amount show a redistribution from cases of extreme cloud cover (0, 1, 7 and 8 okta), which account for up to 90% of annual records, to cases of moderate cloud cover. In accordance with the decrease in sea ice, this may indicate a shift from low-level stratiform towards convective clouds. Copyright © 2009 Royal Meteorological Society [source]


An Arctic and antarctic perspective on recent climate change

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2007
John Turner
Abstract We contrast recent climatic and environmental changes and their causes in the Arctic and the Antarctic. There are continuing increases in surface temperatures, losses of sea ice and tundra, and warming of permafrost over broad areas of the Arctic, while most of the major increase in Antarctic temperatures is on the Antarctic Peninsula associated with sea ice loss in the Bellingshausen,Amundsen Seas sector. While both natural atmospheric and oceanic variability, and changes in external forcing including increased greenhouse gas concentrations, must be considered in the quest for understanding such changes, the interactions and feedbacks between system components are particularly strong at high latitudes. For the 1950s to date in the Arctic and for 1957 to date in the Antarctic, positive trends in large-scale atmospheric circulation represented by the Arctic oscillation (AO) and Antarctic oscillations (AAO) and the Pacific North American (PNA) pattern contribute to the long-term temperature trends. However, continuing Arctic trends during the last decade of near neutral AO will require alternate explanations. The trend in the AAO since 1950 is larger than expected from natural variability and may be associated with the decrease in stratospheric ozone over Antarctic. The persistence shown in many Arctic and Antarctic Peninsula components of climate and their influence through possible feedback supports continuation of current trends over the next decade. One can expect large spatial and temporal differences, however, from the relative contributions of intrinsic variability, external forcing, and internal feedback/amplifications. It is particularly important to resolve regional feedback processes in future projections based on modeling scenarios. Copyright © 2006 Royal Meteorological Society. [source]


The El Niño,southern oscillation and Antarctica

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2004
John Turner
Abstract This paper reviews our understanding of how the effects of the El Niño,southern oscillation (ENSO) might be transmitted from the tropical Pacific Ocean to the Antarctic, and examines the evidence for such signals in the Antarctic meteorological, sea ice, ice core and biological records. Many scientific disciples concerned with the Antarctic require an understanding of how the climatic conditions in the tropical and mid-latitude regions affect the Antarctic, and it is hoped that this review will aid their work. The most pronounced signals of ENSO are found over the southeast Pacific as a result of a climatological Rossby wave train that gives positive (negative) height anomalies over the Amundsen,Bellingshausen Sea during El Niño (La Niña) events. However, the extra-tropical signature can sometimes show a high degree of variability between events in this area. In West Antarctica, links between ENSO and precipitation have shown variability on the decadal time scale. Across the continent itself, it is even more difficult to relate meteorological conditions to ENSO, yet analyses of the long meteorological records from the stations do indicate a distinct switch in sign of the pressure anomalies from positive to negative across the minimum in the southern oscillation index. The oceanic signals of ENSO around the Antarctic are less clear, but it has been suggested that the Antarctic circumpolar wave could be forced by the phenomenon. Ice-core data offer the potential to help in understanding the long-term relationship between ENSO and the climate of the Antarctic, but there are difficulties because of the need to smooth the ice-core data to overcome the mixing of snow on the surface. Nevertheless, analysis of methylsulphonic acid in a South Pole core has shown high variability on ENSO time scales. It is clear that some evidence of ENSO can be found in the Antarctic meteorological and ice-core records; however, many of the relationships tend not to be stable with time, and we currently have a poor understanding of the transfer functions by which such signals arrive at the Antarctic from the tropical Pacific. Copyright © 2004 Royal Meteorological Society [source]


The influence of the winter Arctic oscillation on the northern Russia spring temperature

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2002
Vladimir N. Kryjov
Abstract Correlation and trend analyses are applied to examine relationships between the northern Russia snow/ice season surface air temperature (SAT) and winter circulation, represented by the January,March Arctic oscillation (AO) index. The 1935,99 series of winter and spring monthly SAT from five stations are used, with the winter season being defined as January,March and the spring season being defined specifically for each station in accordance with local snow/ice season duration from April,May through April,July. It is shown that the influence of the winter circulation on SAT is evident at least until the end of snow/ice season, which suggests that this influence is implemented via feedbacks provided by snow and sea ice. The winter AO accounts for some 25,50% (15,20%) of the winter (spring) SAT variance. More than 50% of the 30 year (1968,97) trends in both winter and spring SAT for northwestern Russia and more than 40% for northwestern Siberia are linearly correlated with the winter AO. It is proposed that in the Arctic Ocean regions, where snow and ice do not melt completely, the winter AO influence on SAT is likely to be evident at least until the next year's winter. Copyright © 2002 Royal Meteorological Society [source]


Melting out of sea ice causes greater photosynthetic stress in algae than freezing in,

JOURNAL OF PHYCOLOGY, Issue 5 2007
Peter J. Ralph
Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea-ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence-induction kinetics. Sea-ice algae exhibited the least photosynthetic stress when maintained in 35, and 51, salinity, whereas 16, 21, and 65, treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea-ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast-induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea-ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing. [source]


Spatial structure of lemming populations (Dicrostonyx groenlandicus) fluctuating in density

MOLECULAR ECOLOGY, Issue 2 2001
D. Ehrich
Abstract The pattern and scale of the genetic structure of populations provides valuable information for the understanding of the spatial ecology of populations, including the spatial aspects of density fluctuations. In the present paper, the genetic structure of periodically fluctuating lemmings (Dicrostonyx groenlandicus) in the Canadian Arctic was analysed using mitochondrial DNA (mtDNA) control region sequences and four nuclear microsatellite loci. Low genetic variability was found in mtDNA, while microsatellite loci were highly variable in all localities, including localities on isolated small islands. For both genetic markers the genetic differentiation was clear among geographical regions but weaker among localities within regions. Such a pattern implies gene flow within regions. Based on theoretical calculations and population census data from a snap-trapping survey, we argue that the observed genetic variability on small islands and the low level of differentiation among these islands cannot be explained without invoking long distance dispersal of lemmings over the sea ice. Such dispersal is unlikely to occur only during population density peaks. [source]


Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis

PLANT BIOLOGY, Issue 4 2008
M. Hünken
Abstract The Antarctic ice diatom Amphiprora kufferathii Manguin is always accompanied by epiphytic bacteria in its natural habitat. To investigate the nature of this relationship, axenic cultures of A. kufferathii were obtained by ampicillin treatment. Diatom cultures without bacteria were less dense. The bacteria were shown to consume hydrogen peroxide produced by the diatom during photosysnthesis and algal photosynthesis after a hydrogen peroxide shock recovered faster in the presence of bacteria. Three proteobacterial strains isolated from a culture of A. kufferathii were phylogenetically affiliated with the alphaproteobacterial genus Sulfitobacter, the gammaproteobacterial genus Colwellia, and the genus Pibocella of the Bacteriodetes. Native protein gel electrophoresis and enzyme activity staining revealed the presence of superoxide dismutase and glutathione reductase in the isolated bacteria and in A. kufferathii cultures. Catalase was detected in bacterial extracts but not in axenic cultures of A. kufferathii. These observations indicate that the epiphytic bacteria make a significant contribution to the diatom's antioxidative defences. The relationship between the bacteria and A. kufferathii seems to be beneficial for both partners and enhances growth of Amphiprora in the sea ice. [source]


Front and Back Covers, Volume 26, Number 4.

ANTHROPOLOGY TODAY, Issue 4 2010
August 2010
Front cover caption, volume 26 issue 4 Front cover THE GAZA FREEDOM FLOTILLA Mohammed Rassas, a second-generation Palestinian, sports a T-shirt declaring his longing for the homeland he has never known. Mohammed's family was forced to leave Palestine long before he was born, with no opportunity for return. Instead, Mohammed has lived most of his life between Saudi Arabia and Greece, which became his second home. For three weeks Mohammed joined dozens of Greek, Arab and Western volunteers in preparing the Greek ship Eleftheri Mesogeios (,Free Mediterranean'), to carry 2000 tons of humanitarian aid, including prefabricated houses and hospital equipment, to Gaza. The ship formed part of the Gaza Freedom Flotilla, an international effort by volunteers from 36 countries that aimed to send eight ships to Gaza, carrying 700 passengers and 10,000 tonnes of humanitarian aid, in an attempt to prise open the strict embargo Israel has imposed on the Gaza strip since 2007. The Israeli army attacked the flotilla in international waters, killing eight Turkish nationals and one Turkish-American national, and injuring many more. Flotilla participants were placed behind bars. Intending to propagate their own version of events, the Israeli authorities confiscated audio-visual records made by witnesses. As an ethnographer invited to participate in the flotilla, Nikolas Kosmatopoulos was a witness to the events that took place. His notes are published in the form of a narrative in this issue of ANTHROPOLOGY TODAY. Israel has so far rejected the UN's call for an international independent inquiry. The Turkish government has threatened to cut all ties with Israel unless it apologizes or agrees to such an inquiry. Back cover CLIMATE CHANGE ,There is no planet B': an estimated 100,000 people demonstrate at the Copenhagen Climate talks, 12 December 2009. Since the débâcle of the UN Climate talks in Copenhagen last December, a broad new global coalition of resistance has begun to emerge. It includes the Climate Camp protesters who took direct action against the coal-fired Kingsnorth power station and the fourth runway at Heathrow, the tens of thousands of demonstrators who joined the Wave in London in December and the estimated 100,000 who marched at Copenhagen. They join others who have intimate experience of melting sea ice and Andean glaciers, flooding in Bangladesh and New Orleans and droughts in Africa. In April, in Cochabamba, Bolivia, a conference of 35,000 people, many of them indigenous Americans, began to organize to protect themselves and Mother Earth , Pachamama , to avert catastrophic climate change. This new social movement poses a personal and professional challenge to anthropologists to integrate climate issues and global politics into the discipline and into their lives. [source]


Radiative cooling effect of Hurricane Florence in 2006 and precipitation of Typhoon Matsa in 2005

ATMOSPHERIC SCIENCE LETTERS, Issue 2 2009
Quanhua Liu
Abstract The increasing strength of tropical cyclones may be a response of the Earth's interaction between natural variability and human activities. Negative effects of the severe storms, such as flooding, landslides, damage to properties, and even a number of human casualties, have been reported many times. This study reported other aspects on Hurricanes and Typhoons, which may be beneficial to the world. We found that Hurricane Florence in 2006 decreased radiation energy by , 0.5 × 1020 J to the Earth-atmospheric system, about 10% of the annual global energy consumption. If the amount of energy uniformly distributes over the whole Earth surface and over 1-year time, it corresponds to a power of , 0.003 W m,2 The total forcing power on climate change is 0.24 W m,2, if we only take account for the stored fluxes in water, atmosphere, continents, and heat required to melt glaciers and sea ice. Thus, the shielding effect of solar radiation by tropical storms could contribute to ease global warming. In addition, hurricane and typhoon can ease drought sometimes. This study found that the total rainwater carried by Typhoon Matsa in August 2005 into China's inland amounts to about 135 billion tons. The rainfall over the northern China eased severe drought in summer 2005. Copyright © 2009 Royal Meteorological Society [source]


Late Quaternary history of the Kap Mackenzie area, northeast Greenland

BOREAS, Issue 3 2010
BERND WAGNER
Wagner, B., Bennike, O., Cremer, H. & Klug, M. 2010: Late Quaternary history of the Kap Mackenzie area, northeast Greenland. Boreas, Vol. 39, pp. 492,504. 10.1111/j.1502-3885.2010.00148.x. ISSN 0300-9483. The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region. [source]


Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes

BOREAS, Issue 3 2008
KAREN LUISE KNUDSEN
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300,11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling. [source]