Home About us Contact | |||
Sexual Reproduction (sexual + reproduction)
Selected AbstractsON THE EVOLUTION OF SEXUAL REPRODUCTION IN HOSTS COEVOLVING WITH MULTIPLE PARASITESEVOLUTION, Issue 6 2010Rafal Mostowy Host,parasite coevolution has been studied extensively in the context of the evolution of sex. Although hosts typically coevolve with several parasites, most studies considered one-host/one-parasite interactions. Here, we study population-genetic models in which hosts interact with two parasites. We find that host/multiple-parasite models differ nontrivially from host/single-parasite models. Selection for sex resulting from interactions with a single parasite is often outweighed by detrimental effects due to the interaction between parasites if coinfection affects the host more severely than expected based on single infections, and/or if double infections are more common than expected based on single infections. The resulting selection against sex is caused by strong linkage-disequilibria of constant sign that arise between host loci interacting with different parasites. In contrast, if coinfection affects hosts less severely than expected and double infections are less common than expected, selection for sex due to interactions with individual parasites can now be reinforced by additional rapid linkage-disequilibrium oscillations with changing sign. Thus, our findings indicate that the presence of an additional parasite can strongly affect the evolution of sex in ways that cannot be predicted from single-parasite models, and that thus host/multiparasite models are an important extension of the Red Queen Hypothesis. [source] SEXUAL REPRODUCTION, MATING SYSTEM, AND PROTOPLAST DYNAMICS OF SEMINAVIS (BACILLARIOPHYCEAE)1JOURNAL OF PHYCOLOGY, Issue 5 2002Victor A. Chepurnov Cell division, the mating system, and auxosporulation were studied in the marine epipelic diatom Seminavis cf. robusta Danielidis & D. G. Mann. The interphase protoplast contains two girdle-appressed chloroplasts, each with an elongate bar-like pyrenoid, and also a central nucleus, located in a bridge between two vacuoles. Before cell division, the chloroplasts divide transversely and translocate onto the valves. The nucleus relocates to the ventral side for mitosis. After cytokinesis and valve formation, the chloroplasts move back to the girdle, showing a constant clockwise movement relative to the epitheca of the daughter cell. Seminavis cf. robusta is dioecious, and sexual reproduction is possible once cells are less than 50 ,m. In crosses of compatible clones, gametangia pair laterally, without the formation of a copulation envelope, and produce two gametes apiece. The intensity of sexualization increases as cells reduce further in size below the 50-,m threshold. At plasmogamy, the gametangia dehisce fully and the gametes, which were morphologically and behaviorally isogamous, fuse in the space between the gametangial thecae. The auxospore forms a transverse and longitudinal perizonium. After expansion is complete, there is an unequal contraction of the protoplast within the perizonium, creating the asymmetrical shape of the vegetative cell. Apart from this last feature, almost all characteristics exhibited by the live cell and auxospores of Seminavis agree with what is found in Navicula sensu stricto, supporting the classification of both in the Naviculaceae. Haploid parthenogenesis and polyploid auxospores were found, lending support to the view that change in ploidy may be a significant mechanism in diatom evolution. [source] Threatened Peripheral Populations in Context: Geographical Variation in Population Frequency and Size and Sexual Reproduction in a Clonal Woody ShrubCONSERVATION BIOLOGY, Issue 3 2007SARAH B. YAKIMOWSKI especies en riesgo; límites de distribución; poblaciones periféricas; reproducción sexual; Vaccinium stamineum Abstract:,Geographically peripheral populations of widespread species are often the focus of conservation because they are locally rare within political jurisdictions. Yet the ecology and genetics of these populations are rarely evaluated in a broader geographic context. Most expectations concerning the ecology and evolution of peripheral populations derive from the abundant-center model, which predicts that peripheral populations should be less frequent, smaller, less dense, and have a lower reproductive rate than central populations. We tested these predictions and in doing so evaluated the conservation value of peripheral populations for the clonal shrub Vaccinium stamineum L. (Ericaceae, deerberry), which is listed as threatened in Canada. Based on 51 populations sampled from the center to the northern range limits over 2 years, population frequency and size declined toward the range limit, but ramet density increased. Sexual reproductive output varied widely among populations and between years, with many populations producing very few seeds, but did not decline toward range margins. In fact seed mass increased steadily toward range limit, and this was associated with faster germination and seedling growth, which may be adaptive in seasonal northern environments. Our results did not support the prediction that clonal reproduction is more prevalent in peripheral populations or that it contributed antagonistically to the wide variation in seed production. Peripheral populations of V. stamineum are as productive as central populations and may be locally adapted to northern environments. This emphasizes the importance of a broad geographical perspective for evaluating the ecology, evolution, and conservation of peripheral populations. Resumen:,Las poblaciones geográficamente periféricas de una especie de amplia distribución a menudo son el foco de conservación porque son raras localmente dentro de jurisdicciones políticas. Sin embargo, la ecología y genética de estas poblaciones son evaluadas poco frecuentemente en un contexto geográfico más amplio. La mayoría de las expectaciones relacionadas con la ecología y evolución de las poblaciones periféricas se derivan del modelo centro-abundante, que predice que las poblaciones periféricas son menos frecuentes, más pequeńas, menos densas y menor tasa reproductiva que poblaciones centrales. Probamos estas predicciones y al hacerlo evaluamos el valor de conservación de poblaciones periféricas de una especie de arbusto clonal (Vaccinium stamineum L., Ericaceae), que está enlistada como amenazada en Canadá. Con base en 51 poblaciones muestreadas del centro hacia los límites norteńos de su distribución durante 2 ańos, la frecuencia y tamańo poblacional declinó hacia los límites de su distribución, pero la densidad de rametos aumentó. La reproducción sexual varió ampliamente entre las poblaciones y entre ańos, con muchas poblaciones produciendo muy pocas semillas, pero no declinó hacia los límites de su distribución. De hecho, la masa de semillas incrementó sostenidamente hacia los límites, y esto se asoció a una acelerada germinación y crecimiento de plántulas, lo cual puede ser adaptativo en ambientes norteńos estacionales. Nuestros resultados no sustentaron la predicción de que la reproducción clonal es más prevaleciente en poblaciones periféricas o que contribuye antagónicamente a la amplia variación en la producción de semillas. Las poblaciones periféricas de V. stamineum son tan productivas como las poblaciones centrales y pueden estar adaptadas localmente a ambientes norteńos. Esto enfatiza la importancia de una perspectiva geográfica amplia cuando se evalúa la ecología, evolución y conservación de poblaciones periféricas. [source] Sexual Reproduction in Higher Plants I: Fertilization and the Initiation of Zygotic ProgramJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2008Yong-Feng Fan Abstract Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca++ spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area. [source] Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptorsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2000Benjamin L. Preston Abstract eports of the effectsofendocrinedisruptorsonaquatic invertebrates arebecoming increasingly common. However, little is known about the endocrine systems of most aquatic invertebrates, limiting the development of assays based on endocrine mechanisms. As a result, endocrine disruption is often inferred through the effects caused by the chemical of interest, making it difficult to rule out other mechanisms of toxicity. To be a good candidate for an endocrine disruptor, effects should be observed in processes known to be under endocrine control, at life stages where endocrine signals are known to be active, and at concentrations below acute and chronic toxic effects. We developed a 96-h reproductive assay using the freshwater rotifer Brachionus calyciflorus to screen for potential endocrine disruptors and examined cadmium, chlorpyrifos, naphthol, pentachlorophenol, estradiol, methoprene, precocene, nonylphenol, flutamide, and testosterone for effects on asexual and sexual reproduction. Flutamide, testosterone, and nonylphenol inhibited fertilization of sexual females at concentrations of 1, 10, and 50 ,g/L, respectively. The fertilization no-observable-effect concentrations (NOECs) for these compounds were 5 to 200 times lower than previously described reproduction NOECs for B. calyciflorus. Sexual reproduction was inhibited with no effects on asexual reproduction, increasing the likelihood that these specific reproductive effects occurred through an endocrine mechanism. Rotifer reproduction assays may be a useful, rapid, and inexpensive method for screening compounds suspected to have endocrine disrupting activity in aquatic invertebrates. [source] From meiosis to postmeiotic events: Homologous recombination is obligatory but flexibleFEBS JOURNAL, Issue 3 2010Lóránt Székvölgyi Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role. [source] Sexual reproduction of scleractinian corals in public aquariums: current status and future perspectivesINTERNATIONAL ZOO YEARBOOK, Issue 1 2007D. PETERSEN A multiple-choice questionnaire was distributed, mainly via the list servers of the EUAC (European Union of Aquarium Curators) Coral ASP (Animal Sustainability Program) and AquaticInfo, to evaluate the potential of today's aquariums for the captive breeding of scleractinian corals. Sixteen (including the temperate coral Astroides calycularis) of, in total, 24 species (nine families) were recorded as showing reproductive behaviour that could establish an F1 generation. Broadcast spawners (13 species) reproduced mainly in open systems under natural light conditions (in all cases natural moonlight exposure), whereas brooders (11 species) showed less sensitivity towards certain environmental factors known to trigger reproduction in field populations (here moonlight and temperature fluctuations). Except for a few recruits of Galaxea fascicularis and Echinopora lamellosa maintained in a 750 000 litre system, recruits of broadcast spawners could be exclusively obtained by manipulating fertilization and settlement. Brooding corals established generally less than 100 recruits if settlement was not enhanced experimentally. When reproduction was manipulated, it enhanced reproductive success, in most cases to above 100 recruits. We assume that more species, especially brooders, might reproduce in public aquariums without being noticed by the staff owing to the lack of recruitment and of experimental design (larval collection). This study illustrates the great potential for public aquariums to reproduce corals sexually. However, more investigation is necessary to optimize reproductive success and possibly to broaden the spectrum of species reproduced in public aquariums. [source] Sexual reproduction in the tropical corallimorpharian Rhodactis rhodostomaINVERTEBRATE BIOLOGY, Issue 4 2000Nanette E. Chadwick-Furman Abstract. Polyps of the tropical corallimorpharian Rhodactis rhodostoma segregate sexes between center and edge positions within aggregations produced by clonal replication. On a reef flat at Eilat, northern Red Sea, infertile polyps and males occur mainly along the edges of clonal aggregations, while females mostly occupy central positions within each aggregation. In addition, on the inner to middle reef flat where polyps of this species are abundant, aggregations consist mostly of females. On the outer reef flat, where polyps are rare, a sampled aggregation consisted mostly of males and infertile polyps. Male polyps are significantly smaller than females, and the smallest polyps are infertile. Fecundity increases significantly with polyp size in females, but testis size and number do not vary with body size in males. Oocytes are present in polyps during most of the year and gradually increase in size until annual spawning in June-July during the period of maximum day length. Testes do not vary significantly in size during the year and remain a small proportion of body mass (>8%). In contrast, females invest up to 30% of their body mass into gonads during the months immediately before spawning. The annual spawning of gametes coincides with a temporary drop in the frequency of clonal replication by polyps. We estimate that each female polyp of R. rhodostoma may release up to 3000 large eggs (500 ,m in maximum diameter) each summer. The high investment of this corallimorpharian in sexual production of planktonic propagules may allow rapid dispersal to reef habitats distant from parent populations. [source] The function of mate choice in sticklebacks: optimizing Mhc genetics,JOURNAL OF FISH BIOLOGY, Issue 2003M. Milinski Sexual reproduction is an evolutionary ,puzzle'. A sexual female ,throws away' half of her genes (during meiosis), and ,fills up' what she lost with genes from a male. Thus, sexual reproduction can only be successful if the offspring with the new mixture of genes should be more than twice as fit as if she had just made a copy of herself. A challenging hypothesis assumes that infectious diseases select for females that reshuffle the immune genes for their offspring in each generation. The required increase in quality could be achieved by females selectively ,smelling out' suitable immune-genes (i.e. Mhc alleles) in potential partners, which, in combination with the female's genes, offer optimal resistance against quickly changing infectious diseases. It was found that most three spined sticklebacks Gasterosteus aculeatus in natural populations around Plön, Germany, had intermediate instead of maximal numbers of different Mhc class IIB alleles. Furthermore, fish with an intermediate number of different Mhc alleles were infected with the lowest number of both parasite species and parasites per species. This suggests that Mhc heterozygosity was optimized instead of maximized. Can this immunogenetic optimum be achieved through female choice? In a flow channel design that allowed the detection of olfactory signals only, it was found that female three-spined sticklebacks that were ready to spawn preferred males as mates that in combination with their Mhc alleles would allow the production of offspring with the optimal number of Mhc alleles. Thus, mate choice in three-spined sticklebacks could have the two-fold advantage over asexual reproduction that is required to maintain sexual reproduction. The interaction of olfactory with visual signals in three-spined stickleback mate choice is discussed. The three-spined stickleback is a suitable model organism for studying the evolution of sexual reproduction in relation to optimizing offspring immune genetics although other fishes may be as suitable. [source] Constraints on the evolution of asexual reproductionBIOESSAYS, Issue 11-12 2008Jan Engelstädter Sexual reproduction is almost ubiquitous among multicellular organisms even though it entails severe fitness costs. To resolve this apparent paradox, an extensive body of research has been devoted to identifying the selective advantages of recombination that counteract these costs. Yet, how easy is it to make the transition to asexual reproduction once sexual reproduction has been established for a long time? The present review approaches this question by considering factors that impede the evolution of parthenogenesis in animals. Most importantly, eggs need a diploid chromosome set in most species in order to develop normally. Next, eggs may need to be activated by sperm, and sperm may also contribute centrioles and other paternal factors to the zygote. Depending on how diploidy is achieved mechanistically, further problems may arise in offspring that stem from ,inbreeding depression' or inappropriate sex determination systems. Finally, genomic imprinting is another well-known barrier to the evolution of asexuality in mammals. Studies on species with occasional, deficient parthenogenesis indicate that the relative importance of these constraints may vary widely. The intimate evolutionary relations between haplodiploidy and parthenogenesis as well as implications for the clade selection hypothesis of the maintenance of sexual reproduction are also discussed. BioEssays 30:1138,1150, 2008. © 2008 Wiley Periodicals, Inc. [source] Cold tolerance in obligate and cyclical parthenogens of the peach-potato aphid, Myzus persicaeECOLOGICAL ENTOMOLOGY, Issue 4 2004Christoph Vorburger Abstract., 1. Many aphids form mixed populations of cyclical and obligate parthenogens. This is puzzling, because all else being equal, obligate parthenogens should outcompete cyclical parthenogens due to the two-fold cost of sex. Yet cyclical parthenogens produce frost-resistant, diapausing eggs in autumn, while obligate parthenogens spend the winter as active stages. Frost resistance thus represents a short-term advantage to sexual reproduction mediated by winter temperatures, which may promote this coexistence. 2. Because obligate parthenogens overwinter as active stages, there may be selection for increased cold tolerance compared to cyclical parthenogens. This has the potential to gradually erode the advantage of sexually producing eggs. 3. Four obligately and four cyclically parthenogenetic lines of Myzus persicae (Sulzer) (Hemiptera: Aphididae) were collected from each of two areas differing in winter severity, and their survival after exposure to a severe experimental frost (14 h at ,9 °C), as well as their reproductive performance at a low (10 °C) and a high (20 °C) temperature were compared. 4. There was significant variation among lines in survival after the experimental frost, but this variation was neither related to their reproductive mode, nor to their area of origin. Similarly, neither reproductive mode nor origin had a significant effect on reproductive performance, independent of temperature. The average slope of the response to variation in temperature was also similar for both reproductive modes, despite the fact that slopes differed significantly among lines. 5. Within the limits of extrapolating from laboratory experiments, it is concluded that in M. persicae, the active stages of obligate parthenogens are not better adapted to cold temperatures than those of cyclical parthenogens. [source] Genetic Allee effects on performance, plasticity and developmental stability in a clonal plantECOLOGY LETTERS, Issue 6 2000M. Fischer Negative effects of small population size on fitness, so-called Allee effects, may threaten population persistence even in intact habitat remnants. We studied genotypes of 14 isolated populations of the clonal plant Ranunculus reptans, for which molecular genetic (RAPD-) variability is higher for large than for small populations. In a competition-free greenhouse environment vegetative offspring of genotypes from large populations produced more rosettes and flowers, indicating higher fitness. Within-genotype coefficients of variation in performance traits, indicating developmental instability, were lower for genotypes from populations with higher RAPD-variability. In competition with a taller grass, we found relative reduction in leaf length less pronounced for plants from large populations, suggesting higher adaptive plasticity. Our experimental study of a plant with predominantly vegetative reproduction suggests, that negative genetic effects of recent habitat fragmentation, which so far rather were expected in plants with frequent sexual reproduction, are more severe and more common than previously acknowledged. [source] The ecological and evolutionary significance of frost in the context of climate changeECOLOGY LETTERS, Issue 5 2000D.W. Inouye The effects that below-freezing temperature (frost) can have at times of year when it is unusual are an interesting ecological phenomenon that has received little attention. The physiological consequence of formation of ice crystals in plant tissue is often death of the plants, or at least of sensitive parts that can include flower buds, ovaries, and leaves. The loss of potential for sexual reproduction can have long-lasting effects on the demography of annuals and long-lived perennials, because the short-term negative effects of frosts can result in longer-term benefits through lowered populations of seed predators. The loss of host plants can have dramatic consequences for herbivores, even causing local extinctions, and the loss of just flowers can also affect populations of seed predators and their parasitoids. Frosts can cause local extinctions and influence the geographical distribution of some species. The potential for global climate change to influence the frequency and distribution of frost events is uncertain, but it seems likely that they may become more frequent in some areas and less frequent in others. [source] Economic aspects of human cloning and reprogeneticsECONOMIC POLICY, Issue 36 2003Gilles Saint-Paul SUMMARY While most discussions of human cloning start and end with ethics, this paper analyses the economics of human cloning. I analyse the incentives for cloning and its implications for the long-run distribution of skills and income. I discuss models of human cloning for different motives, focusing on those that tend to produce new human beings with improved ability. I distinguish three cases: cloning as a means of assisted reproduction for infertile couples, cloning by fertile couples aimed at producing high ability offspring and, finally, financially motivated cloning. The third case supposes that the creator of a clone can appropriate some fraction of the clone's future income. Even if this fraction is small, the possibility of producing exceptionally talented clones with correspondingly high incomes might make it profitable, and thus turn cloning into a form of financial investment. An important consequence of these models is that to the extent that ability is genetically determined and cloners prefer to make high-ability clones, cloning will act as a form of what might be called ,unnatural selection'. Following standard Darwinian logic, such selection will tend to increase the proportion of high ability people in society. Indeed, under some assumptions the distribution of ability eventually converges to a mass point at the highest possible ability level. Under weaker assumptions, it is shown that ability-reducing genes are eventually eliminated. These results do not depend on cloning displacing sexual reproduction or even being widespread; they hold even if a small, or even negligible number of top ability workers are cloned at a small (but not negligible) number of copies. The paper discusses the plausibility of the models and their results in light on the evidence on marriage markets, child selection, human assisted reproduction and animal husbandry. Finally, it is shown how the analysis can be used to help formulate policies toward cloning, whether they aim at preventing it or managing its external effects. , Gilles Saint-Paul [source] Population dynamics of the ectomycorrhizal fungal species Tricholoma populinum and Tricholoma scalpturatum associated with black poplar under differing environmental conditionsENVIRONMENTAL MICROBIOLOGY, Issue 5 2006Hervé Gryta Summary Fungi combine sexual reproduction and clonal propagation. The balance between these two reproductive modes affects establishment dynamics, and ultimately the evolutionary potential of populations. The pattern of colonization was studied in two species of ectomycorrhizal fungi: Tricholoma populinum and Tricholoma scalpturatum. The former is considered to be a host specialist whereas T. scalpturatum is a generalist taxon. Fruit bodies of both basidiomycete species were mapped and collected over several years from a black poplar (Populus nigra) stand, at two different sites. Multilocus genotypes (= genets) were identified based on the analysis of random amplified polymorphic DNA (RAPD) patterns, inter-simple sequence repeat (ISSR) patterns and restriction fragment length polymorphisms (RFLPs) in the ribosomal DNA intergenic spacer (rDNA IGS). The genetic analyses revealed differences in local population dynamics between the two species. Tricholoma scalpturatum tended to capture new space through sexual spores whereas T. populinum did this by clonal growth, suggesting trade-offs in allocation of resources at the genet level. Genet numbers and sizes strongly differ between the two study sites, perhaps as a result of abiotic disturbance on mycelial establishment and genet behaviour. [source] Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptorsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2000Benjamin L. Preston Abstract eports of the effectsofendocrinedisruptorsonaquatic invertebrates arebecoming increasingly common. However, little is known about the endocrine systems of most aquatic invertebrates, limiting the development of assays based on endocrine mechanisms. As a result, endocrine disruption is often inferred through the effects caused by the chemical of interest, making it difficult to rule out other mechanisms of toxicity. To be a good candidate for an endocrine disruptor, effects should be observed in processes known to be under endocrine control, at life stages where endocrine signals are known to be active, and at concentrations below acute and chronic toxic effects. We developed a 96-h reproductive assay using the freshwater rotifer Brachionus calyciflorus to screen for potential endocrine disruptors and examined cadmium, chlorpyrifos, naphthol, pentachlorophenol, estradiol, methoprene, precocene, nonylphenol, flutamide, and testosterone for effects on asexual and sexual reproduction. Flutamide, testosterone, and nonylphenol inhibited fertilization of sexual females at concentrations of 1, 10, and 50 ,g/L, respectively. The fertilization no-observable-effect concentrations (NOECs) for these compounds were 5 to 200 times lower than previously described reproduction NOECs for B. calyciflorus. Sexual reproduction was inhibited with no effects on asexual reproduction, increasing the likelihood that these specific reproductive effects occurred through an endocrine mechanism. Rotifer reproduction assays may be a useful, rapid, and inexpensive method for screening compounds suspected to have endocrine disrupting activity in aquatic invertebrates. [source] DELETERIOUS MUTATION AND THE EVOLUTION OF EUSOCIALITYEVOLUTION, Issue 12 2002Joshua L. Cherry Abstract., Certain arguments concerning the evolution of eusociality form a classic example of the application of the principles of kin selection. These arguments center on the different degrees of relatedness of potential beneficiaries of an individual's efforts, for example a female's higher relatedness to her sisters than to her daughters in a haplodiploid system. This type of reasoning is insufficient to account for the evolution and maintainence of sexual reproduction, because parthenogenic females produce offspring that are more closely related to them than are offspring produced sexually. Among the forces invoked to explain sexual reproduction is deleterious mutation. This factor can be shown to favor eusociality as well, because siblings produced by helping carry fewer deleterious alleles on average than would offspring. The strength of this effect depends on the genomewide deleterious mutation rate, U, and on the selection coefficient, s, associated with deleterious alleles. For small s, the effect depends approximately on the product Us. This phenomenon illustrates that an assumption implicit in some analyses,that the relatedness of an individual to an actor is all that matters to its value to that actor,can fail for the evolution of eusociality as it does for the evolution of sex. [source] Welche Bedeutung hat die sexuelle Reproduktion für den Erfolg der Art Calamagrostis epigejos (L.) Roth?FEDDES REPERTORIUM, Issue 3-4 2003A. Grüttner Dr. Als Quellen der Variabilität im Potential der sexuellen Reproduktion fanden sich Unterschiede in der Keimungsgeschwindigkeit (entspelzte Karyopsen keimten rascher und synchroner), bei den Keimraten und vor allem bei der Zahl keimfähiger Diasporen pro Rispe. Von den anderen abweichend zeigten kleine isolierte Bestände geringere Keimraten und brachten , wohl bedingt durch Selbstinkompatibilität , kaum keimfähige Diasporen hervor. Bei gezielter Suche fanden sich Keimlinge auf offenen, zumindest leicht tonhaltigen Rohböden. Das Wachstum der Keimlinge stagnierte und keiner von über 6000 überlebte bis zum nächsten Jahr. Da Bewässerung die Entwicklung auf dem selben Substrat sehr förderte, war offenbar Wassermangel für das geringe Wachstum ausschlaggebend. Die erfolgreiche generative Etablierung ist also auf den Zufall günstiger Witterungsphasen oder Standorte angewiesen. Auch im Frühjahr waren noch keimfähige Diasporen in aufrechten Rispen nachweisbar, sodass sich der Diasporenfall mehr oder weniger über das gesamte Jahr erstreckt. Im Zusammenspiel mit dem Fehlen von Dormanz ermöglicht das die Nutzung nicht vorhersagbarer günstiger Witterungsphasen. Bei einem Kulturversuch kamen einzelne Individuen auch mit schwierigen Substraten gut zurecht, auf denen die Mehrzahl kümmerte. Danach ergibt sich die standörtliche Breite der Art C.,epigejos als Summe sehr unterschiedlicher Reaktionsnormen der Individuen. Die angeführten Befunde unterstreichen insgesamt die Bedeutung der sexuellen Reproduktion und der genetischen Diversität für den Erfolg der Art. Is sexual reproduction important to the success of Calamagrostis epigejos (L.) Roth? Calamagrostis epigejos is very common in Central Europe and occupies an extraordinary wide range of habitats. As up to now nearly no reports exist on spontaneous seedling emergence, we aimed to investigate several aspects of sexual reproduction, thereby refering to contrasting habitat types. Components in the variability of the potential of sexual reproduction were differences in germination speed and rates and, above all, number of germinable seeds per panicle. Unlike the others, small isolated stands produced very low numbers of germinable seeds, probably caused by selfincompatibility. Our search for seedlings was successful at several sites , all distinguished by raw soil, a certain clay content, and little cover of vegetation and plant litter. The seedlings grew very slowly and none of more than 6000 survived the first year. Additional water enabling much better growth indicates the necessity of favorable weather or favorable habitats (with constant water supply) for successful seedling establishment. Seed dispersal nearly all around the year, combined with the lack of dormancy, allows to make use of the unpredictable opportunities of suitable weather periods. A growth experiment on different substrates demonstrated: the more extreme the conditions, the more differentiated the amount of biomass achieved by each of 20 genets. Some genets grew well even on substrates where most others stagnated. This outcome suggests the wide range of habitats covered by C. epigejos to be the result of the genetic diversity, which in turn is maintained by sexual reproduction and avoidance of inbreeding. [source] Fungal cannons: explosive spore discharge in the AscomycotaFEMS MICROBIOLOGY LETTERS, Issue 1 2007Frances Trail Abstract The ascomycetous fungi produce prodigious amounts of spores through both asexual and sexual reproduction. Their sexual spores (ascospores) develop within tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of many fungal plant diseases and for the dispersal of many saprophytic fungi. The mechanism has long been thought to be driven by turgor pressure within the extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, but the results indicate diversity in ascus function that reflects ascus size, fruiting body type, and the niche of the particular species. [source] A polyploid population of Saccharomyces cerevisiae with separate sexes (dioecy)FEMS YEAST RESEARCH, Issue 6 2010Rim Al Safadi Abstract Saccharomyces cerevisiae has proved to be an interesting model for studies of evolution, with whole-genome duplication shown to have played an important role in the evolution of this species. This phenomenon depends on the formation of a transient stable polyploid state. Previous studies have reported polyploidy to be an unstable state in yeast, but here, we describe a polyploid population of S. cerevisiae. The evolution of higher eukaryotes has also involved the development of different systems of sexual reproduction, the choice between self-fertilization and out-crossing becoming a key issue. Saccharomyces cerevisiae is a hermaphrodite eukaryote, despite the theoretical genetic disadvantages of this strategy, in which self-fertilization occurs. We describe, for the first time, a near-dioecious (with separate sexes) population in this species. Mating type and the MAT locus display complex segregations. Essentially, each strain produces, by meiosis, spores of only one mating type: mata or mat,. Moreover, strains are heterothallic, and diploid nonmating clones generated from a single spore do not sporulate. These three properties limit self-fertilization and strongly favour out-crossing. We suggest that the shift in sexual strategy, from hermaphroditism to dioecy, is specific to the brewing process, which overcomes the sexual isolation probably found in natural biotopes. [source] The release of elongated, sheathed ascospores from bottle-shaped asci in Dipodascus geniculatusFEMS YEAST RESEARCH, Issue 2 2007Ané Van Heerden Abstract Yeasts use different mechanisms to release ascospores of different lengths from bottle-shaped asci. Round to oval-shaped ascospores are enveloped in oxylipin-coated compressible sheaths, enabling ascospores to slide past each other when they reach the narrowing ascus neck. However, more elongated ascospores do not contain sheaths, but are linked by means of oxylipin-coated interlocked hooked ridges on the surfaces of neighboring ascospores, thereby keeping them aligned while they are pushed towards the ascus tip by turgor pressure. In this study, we found elongated, oxylipin-coated sheathed ascospores in Dipodascus geniculatus that are released effectively from bottle-shaped asci without alignment. This is possible because the ascus neck and opening have a diameter that is the same as the length of the ascospore, thus allowing the ascospores to turn sideways without blocking the ascus when they are released. We found that increased concentrations of acetylsalicylic acid inhibit both ascospore release and 3-hydroxy oxylipin production in this yeast, thereby implicating this oxylipin in sexual reproduction. [source] The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewardsFUNCTIONAL ECOLOGY, Issue 5 2009Geraldine A. Wright Summary 1.,The evolution of flowering plants has undoubtedly been influenced by a pollinator's ability to learn to associate floral signals with food. Here, we address the question of ,why' flowers produce scent by examining the ways in which olfactory learning by insect pollinators could influence how floral scent emission evolves in plant populations. 2.,Being provided with a floral scent signal allows pollinators to learn to be specific in their foraging habits, which could, in turn, produce a selective advantage for plants if sexual reproduction is limited by the income of compatible gametes. Learning studies with honeybees predict that pollinator-mediated selection for floral scent production should favour signals which are distinctive and exhibit low variation within species because these signals are learned faster. Social bees quickly learn to associate scent with the presence of nectar, and their ability to do this is generally faster and more reliable than their ability to learn visual cues. 3.,Pollinators rely on floral scent as a means of distinguishing honestly signalling flowers from deceptive ones. Furthermore, a pollinator's sensitivity to differences in nectar rewards can bias the way that it responds to floral scent. This mechanism may select for flowers that provide olfactory signals as an honest indicator of the presence of nectar or which select against the production of a detectable scent signal when no nectar is present. 4.,We expect that an important yet commonly overlooked function of floral scent is an improvement in short-term pollinator specificity which provides an advantage to both pollinator and plant over the use of a visual signal alone. This, in turn, impacts the evolution of plant mating systems via its influence on the species-specific patterns of floral visitation by pollinators. [source] Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowdingFUNCTIONAL ECOLOGY, Issue 3 2004T. SCHRÖDER Summary 1In monogonont rotifers parthenogenetic reproduction allows population growth, and mictic (sexual) reproduction leads to the production of diapausing eggs. When amictic females are exposed to a mixis stimulus, they produce mictic daughters, whose eggs develop into males or, if fertilized, into diapausing eggs. Experiments showed that mictic offspring production is initiated by crowding in females of Brachionus angularis Gosse 1851, Epiphanes senta (O.F. Müller 1773) and Rhinoglena frontalis Ehrenberg 1853, just as it is in Brachionus calyciflorus Pallas 1766 and B. plicatilis Müller 1786. 2In B. calyciflorus, B. angularis, E. senta and R. frontalis, the propensity of amictic females to respond to crowding by producing mictic female offspring is low in the stem female hatching from a diapausing egg, but then increases after some generations. In many cases, only few mictic offspring are produced by crowded females of the second to the fifth generation, but the maximal response occurs only in later generations. Delayed sexual reproduction in early generations from the resting egg may be advantageous, because it first favours rapid population growth and later on maximizes resting egg production. However, it may be disadvantageous, if unpredictable environmental variation causes a population decline when sexual reproduction is still suppressed. 3The extent to which sexual reproduction is delayed varies among and within species. When strains from populations in temporary and permanent habitats were compared, sexual reproduction was significantly delayed in strains from temporary habitats in all species, whereas in B. calyciflorus and R. frontalis mixis was not significantly delayed in strains from permanent habitats. In E. senta mixis was significantly delayed in clones from both habitat types. 4Within all strains there was significant variation among clones in the propensity to produce mictic offspring, the extent to which sexual reproduction was delayed in the first generations after the stem female hatched, or both. [source] Polyploidy-Associated Genomic Instability in Arabidopsis thalianaGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 4 2010Yixing Wang Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2-2 (also named tardy asynchronousmeiosis-2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy-associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution. [source] Shrub effects on herbs and grasses in semi-natural grasslands: positive, negative or neutral relationships?GRASS & FORAGE SCIENCE, Issue 1 2008A. Pihlgren Abstract The present study investigated how the abundance and sexual reproduction of herbs and grasses relates to the presence of shrubs of Rosa dumalis in three semi-natural pastures in Sweden. Shrubs may affect grassland plants negatively by competition, positively by serving as grazing refuge, or neutrally. At different distances from shrubs of R. dumalis, data were collected on plant abundance, frequency of reproductive shoots, vegetation height and litter depth. In one grassland, data were collected on seedling density and frequency of reproductive shoots in the presence and absence of grazing. The shrubs functioned as grazing refuges with taller vegetation, deeper litter and higher probability of reproduction by plants. The overall number of plant species remained the same at all distances from shrubs. Most species showed a neutral relationship with shrubs. Proportionately, 0·08,0·26 of the species showed a negative pattern to shrubs and 0·14,0·30 a positive pattern. Seedling density was negatively correlated with litter depth and peaked at 60,90 cm from shrubs. Establishment of seedlings of small-seeded species was negatively related to shrubs probably because of thicker litter layer close to shrubs. The observed patterns were compared with different functional traits, such as Ellenberg values, plant height, growth form and Raunkiaer life form. Plant height from data in the literature was the trait that best explained the relationship of plant species to shrubs because tall species were more common in proximity to shrubs. It was concluded that shrubs increase the heterogeneity in grasslands and that intensive shrub-clearing may negatively affect biodiversity. [source] Production of asexual and sexual offspring in the triploid sexual planarian Dugesia ryukyuensisINTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 3 2009Kazuya KOBAYASHI Abstract Certain freshwater planarians reproduce asexually as well as sexually, and their chromosomal ploidies include polyploidy, aneuploidy and mixoploidy. Previously, we successfully performed an experiment in which a clonal population produced by asexual reproduction of the Dugesia ryukyuensis (OH strain) switched to the sexual mode of reproduction. Worms of this strain are triploid with a pericentric inversion on Chromosome 4. The worms were switched to sexual reproduction after being fed with sexually mature Bdellocephala brunnea, which is a sexually reproducing species. The resulting sexualized OH strain produced cocoons filled with several eggs. Two putative factors, Mendelian factor(s) and chromosomal control(s), have been proposed as determining the reproductive mode. The present study demonstrated that inbreeding of the resultant sexualized worms produced the following four types of offspring through sexual reproduction: diploid asexual worms, triploid asexual worms, diploid sexual worms and triploid sexual worms. The chromosomal mutation on Chromosome 4 was inherited by these offspring independent of their reproductive mode. These results provide two important pieces of information: (i) the putative genetic factor was not necessarily inherited in a Mendelian fashion; and (ii) the reproductive mode is not regulated by chromosomal changes such as polyploidy or chromosomal mutations. This suggests that asexuality in D. ryukyuensis is regulated by an unknown factor(s) other than a Mendelian factor or a chromosomal control. [source] Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fissionINVERTEBRATE BIOLOGY, Issue 2 2007Adam M. Reitzel Abstract. The starlet sea anemone, Nematostella vectensis, is a small burrowing estuarine animal, native to the Atlantic coast of North America. In recent years, this anemone has emerged as a model system in cnidarian developmental biology. Molecular studies of embryology and larval development in N. vectensis have provided important insights into the evolution of key metazoan traits. However, the adult body plan of N. vectensis may arise via four distinct developmental trajectories: (1) embryogenesis following sexual reproduction, (2) asexual reproduction via physal pinching, (3) asexual reproduction via polarity reversal, and (4) regeneration following bisection through the body column. Here, we compare the ontogenetic sequences underlying alternate developmental trajectories. Additionally, we describe the predictable generation of anomalous phenotypes that can occur following localized injuries to the body column. These studies suggest testable hypotheses on the molecular mechanisms underlying alternate developmental trajectories, and they provoke new questions about the evolution of novel developmental trajectories and their initiation via environmental cues. [source] Erythropoiesis and Molecular Mechanisms for Sexual Determination in Malaria ParasitesIUBMB LIFE, Issue 4 2000R. E. L. Paul Abstract Malaria parasites proliferate asexually within the vertebrate host but must undergo sexual reproduction for transmission to mosquitoes and hence infection of new hosts. The developmental pathways controlling gametocytogenesis are not known, but several protein kinases and other putative signal transduction elements possibly involved in this phenomenon have been found in Plasmodium. Recently, another developmental pathway, that of Plasmodium sex determination (male or female), has been shown to be triggered by erythropoiesis in the host. Rapid progress is being made in our understanding of the molecular basis of mammalian erythropoiesis, revealing kinase pathways that are essential to cellular responses triggered by the hormone erythropoietin. Although the molecular mechanisms whereby this hormone modulates the sex ratio of malaria parasites remain to be elucidated, it probably activates, within the parasite, transduction pathways similar to those found in other eukaryotes. Indeed, enzymes belonging to protein kinase families known to be involved in the response of mammalian cells to erythropoietin (such as the mitogen-activated protein kinases) have been identified in P. falciparum gametocytes. Some of these enzymes differ markedly from their mammalian homologs; therefore, identification of the transduction pathways of the parasite that are responsible for its developmental response to erythropoietin opens the way to the development of transmission-blocking drugs based on kinase inhibitors. [source] Lichen acclimatization on retention trees: a conservation physiology lessonJOURNAL OF APPLIED ECOLOGY, Issue 4 2009Kadi Jairus Summary 1.,Green-tree retention (GTR) has been suggested as a means to effectively support epiphytic lichen species in managed forests, given the low lichen mortality on retention trees in the short term. However, a long-term perspective requires a physiological understanding of lichen responses to logging. This study compares anatomical, morphological and physiological traits of lichens on retention trees and on intact forest trees. 2.,Thalli of nine taxa (Buellia griseovirens, Cladonia digitata, Hypogymnia physodes, Lecanora allophana, Lecanora pulicaris, Lepraria spp., Peltigera praetextata, Pertusaria amara and Phlyctis argena) were sampled from birch Betula spp. and aspen Populus tremula in GTR cuts, where they had previously been reported to survive well, and in adjacent managed forests. In the laboratory, chlorophyll fluorescence parameter Fv/Fm, thickness of the upper cortex, photobiont to mycobiont ratio and (in Lecanora species) the relative area of the apothecia were measured. 3.,All the lichen samples collected from GTR cuts appeared alive, but their Fv/Fm was significantly lower, relative areas of the apothecia were larger and the upper cortices of thalli were thicker compared with the samples from adjacent forests. No difference in photobiont to mycobiont ratio was found. These patterns were broadly consistent among species, indicating a common mechanism: while suffering from photoinhibition, the lichens had acclimatized to the open conditions and increased their investment to sexual reproduction in a few years. 4.,Synthesis and applications. The study highlights the value of a morpho-physiological framework for conservation management by pointing out that, in GTR areas, lichen survival is high-irradiation limited and heavily dependent on phenotypic plasticity. A thin upper cortex may be a common feature of the most sensitive species. To sustain epiphyte populations in managed forests, precautionary harvesting strategies (gradual felling; group-retention; extended rotations) should be preferred and large-enough populations should be preserved, even though short-term studies suggest a high survival of lichens in cut areas. [source] The effect of within-genet and between-genet competition on sexual reproduction and vegetative spread in Potentilla anserina ssp. egediiJOURNAL OF ECOLOGY, Issue 3 2004PIRJO RAUTIAINEN Summary 1Patterns of biomass allocation to sexual and vegetative reproduction were examined in a perennial stoloniferous clonal plant, Potentilla anserina (L.) Rydb. ssp. egedii (Wormsk.) Hiitonen, in relation to intraspecific competition between monoclonal and multiclonal ramets. 2We predicted that a lack of competition would generate allocation to rapid, short-distance spread (vegetative propagation), while the presence of competition would increase allocation to long-distance dispersal (sexual reproduction), and that the allocation shift would be more pronounced where the competing ramets were related. 3P. anserina ramets were grown in a glasshouse in small pots, either alone (no competition) or with a size-matched ramet that originated from the same clone (within-genet competition) or a different one (between-genet competition). 4Competition suppressed both growth and reproduction, but there was no treatment response in relative investment at the level of a whole genet, although both mother ramets and their daughters showed clear effects when analysed separately. 5When experiencing competition, the mother ramet allocated relatively more to flowers, whereas allocation to vegetative growth was more intense when competition was absent. Allocation patterns were independent of the relatedness of competitors. 6The results imply that P. anserina can modify the allocation of resources to different life-history traits according to competitive stress. Such flexibility is likely to reflect a shift in the optimal allocation strategy during the life cycle of a plant with a guerilla growth form with rapid exploitation of free space in a new patch by vegetative spread favoured. When spread becomes limited by competition, long-distance dispersal in space (seeds) or time (persistence) becomes beneficial. [source] |