Sequence Variation (sequence + variation)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Sequence Variation

  • dna sequence variation


  • Selected Abstracts


    GENES WITH SOCIAL EFFECTS ARE EXPECTED TO HARBOR MORE SEQUENCE VARIATION WITHIN AND BETWEEN SPECIES

    EVOLUTION, Issue 7 2009
    Timothy A. Linksvayer
    The equilibrium sequence diversity of genes within a population and the rate of sequence divergence between populations or species depends on a variety of factors, including expression pattern, mutation rate, nature of selection, random drift, and mating system. Here, we extend population genetic theory developed for maternal-effect genes to predict the equilibrium polymorphism within species and sequence divergence among species for genes with social effects on fitness. We show how the fitness effects of genes, mating system, and genetic system affect predicted gene polymorphism. We find that, because genes with indirect social effects on fitness effectively experience weaker selection, they are expected to harbor higher levels of polymorphism relative to genes with direct fitness effects. The relative increase in polymorphism is proportional to the inverse of the genetic relatedness between individuals expressing the gene and their social partners that experience the fitness effects of the gene. We find a similar pattern of more rapid divergence between populations or species for genes with indirect social effects relative to genes with direct effects. We focus our discussion on the social insects, organisms with diverse indirect genetic effects, mating and genetic systems, and we suggest specific examples for testing our predictions with emerging sociogenomic tools. [source]


    Sequence Variations of the Human MPDZ Gene and Association With Alcoholism in Subjects With European Ancestry

    ALCOHOLISM, Issue 4 2009
    Victor M. Karpyak
    Background:,Mpdz gene variations are known contributors of acute alcohol withdrawal severity and seizures in mice. Methods:, To investigate the relevance of these findings for human alcoholism, we resequenced 46 exons, exon,intron boundaries, and 2 kilobases in the 5, region of the human MPDZ gene in 61 subjects with a history of alcohol withdrawal seizures (AWS), 59 subjects with a history of alcohol withdrawal without AWS, and 64 Coriell samples from self-reported nonalcoholic subjects [all European American (EA) ancestry] and compared with the Mpdz sequences of 3 mouse strains with different propensity to AWS. To explore potential associations of the human MPDZ gene with alcoholism and AWS, single SNP and haplotype analyses were performed using 13 common variants. Results:, Sixty-seven new, mostly rare variants were discovered in the human MPDZ gene. Sequence comparison revealed that the human gene does not have variations identical to those comprising Mpdz gene haplotype associated with AWS in mice. We also found no significant association between MPDZ haplotypes and AWS in humans. However, a global test of haplotype association revealed a significant difference in haplotype frequencies between alcohol-dependent subjects without AWS and Coriell controls (p = 0.015), suggesting a potential role of MPDZ in alcoholism and/or related phenotypes other than AWS. Haplotype-specific tests for the most common haplotypes (frequency > 0.05), revealed a specific high-risk haplotype (p = 0.006, maximum statistic p = 0.051), containing rs13297480G allele also found to be significantly more prevalent in alcoholics without AWS compared with nonalcoholic Coriell subjects (p = 0.019). Conclusions:, Sequencing of MPDZ gene in individuals with EA ancestry revealed no variations in the sites identical to those associated with AWS in mice. Exploratory haplotype and single SNP association analyses suggest a possible association between the MPDZ gene and alcohol dependence but not AWS. Further functional genomic analysis of MPDZ variants and investigation of their association with a broader array of alcoholism-related phenotypes could reveal additional genetic markers of alcoholism. [source]


    Genetic population structure of the net-winged midge, Elporia barnardi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersal

    FRESHWATER BIOLOGY, Issue 1 2003
    M. J. Wishart
    SUMMARY 1.,The net-winged midges (Diptera: Blephariceridae), with highly specific habitat requirements and specialised morphological adaptations, exhibit high habitat fidelity and a limited potential for dispersal. Given the longitudinal and hierarchical nature of lotic systems, along with the geological structure of catchment units, we hypothesise that populations of net-winged midge should exhibit a high degree of population sub-structuring. 2.,Sequence variation in the cytochrome c oxidase subunit I (COI) region of the mitochondrial DNA (mtDNA) was examined to determine patterns of genetic variation and infer historical and contemporary processes important in the genetic structuring of populations of Elporia barnardi. The DNA variation was examined at sites within streams, between streams in the same range, and between mountain ranges in the south-western Cape of South Africa. 3.,Twenty-five haplotypes, 641 bp in length, were identified from the 93 individuals sampled. A neighbour-joining tree revealed two highly divergent clades (,5%) corresponding to populations from the two mountain ranges. A number of monophyletic groups were identified within each clade, associated with individual catchment units. 4.,The distribution of genetic variation was examined using analysis of molecular variance (amova). This showed most of the variation to be distributed among the two ranges (,80%), with a small percentage (,15%) distributed among streams within each range. Similarly, variation among streams on Table Mountain was primarily distributed among catchment units (86%). A Mantel's test revealed a significant relationship between genetic differentiation and geographical distance, suggesting isolation by distance (P < 0.001). 5.,Levels of sequence divergence between the two major clades, representing the two mountain ranges, are comparable with those of some intra-generic species comparisons. Vicariant events, such as the isolation of the Peninsula mountain chain and Table Mountain, may have been important in the evolution of what is now a highly endemic fauna. 6.,The monophyletic nature of the catchment units suggests that dispersal is confined to the stream environment and that mountain ridges provide effective physical barriers to dispersal of E. barnardi. [source]


    Sequence variation in trypsin- and chymotrypsin-like cDNAs from the midgut of Ostrinia nubilalis: methods for allelic differentiation of candidate Bacillus thuringiensis resistance genes

    INSECT MOLECULAR BIOLOGY, Issue 1 2006
    B. S. Coates
    Abstract Midgut expressed alkaline serine proteases of Lepidoptera function in conversion of Bacillus thuringiensis (Bt) protoxin to active toxin, and reduced level of transcript T23 is associated with Ostrinia nubilalis resistance to Dipel® Bt formulations. Three groups of trypsin- (OnT25, OnT23, and OnT3) and two chymotrypsin-like (OnC1 and OnC2) cDNAs were isolated from O. nubilalis midgut tissue. Intraspecific groupings are based on cDNA similarity and peptide phylogeny. Derived serine proteases showed a catalytic triad (His, Asp, and Ser; except transcript OnT23a), three substrate specificity-determining residues, and three paired disulphide bonds. RT-PCR indicated all transcripts are expressed in the midgut. Mendelian-inherited genomic markers for loci OnT23, OnT3 and OnC1 will be useful for association of alleles with bioassayed Bt toxin resistance phenotypes. [source]


    Cryptic differentiation and geographic variation in genetic diversity of Hall's Babbler Pomatostomus halli

    JOURNAL OF AVIAN BIOLOGY, Issue 2 2001
    Grant I. Miura
    Sequence variation was examined in domain I of the mitochondrial control region in three Queensland populations of Hall's Babbler Pomatostomus halli, a geographically restricted, monotypic songbird in eastern Australia. Surprisingly, we found that domain I sequences were strongly differentiated into two major clades differing by 3.29%. These two clades exhibited nearly complete geographic concordance with northern and southern populations, except for two haplotypes which were sampled in the north of the range but were phylogenetically allied to the southern clade. We also found a seven-fold higher level of genetic diversity in the northern than in the southern populations. Neutrality and molecular clock tests suggested that selection or differences in substitution rates were not responsible for this difference in diversity. However, a maximum likelihood analysis of gene flow between the north and south suggested that the difference in diversity could be due to both greater population size in the north and asymmetric gene flow dominated by south to north dispersal events. A likelihood ratio test rejected a model in which population sizes were equal and rates of gene flow symmetric, and came close to rejecting a model in which only population sizes were constrained to be equal. These results suggest that different population sizes and asymmetric gene flow could be a major source of differences in genetic variation between populations of Hall's Babbler, although ecological and biogeographic causes for these differences are obscure. [source]


    Study of the Cytochrome b Gene Sequence in Populations of Taiwan

    JOURNAL OF FORENSIC SCIENCES, Issue 1 2010
    Hsiao-Lin Hwa M.D., Ph.D.
    Abstract:, The cytochrome b gene (MTCYB) has been widely used in taxonomic research. In this study, the sequence polymorphism of the MTCYB gene was determined in 417 subjects of eight populations living in Taiwan (Taiwanese Han, indigenous Taiwanese, Tao, mainland Chinese, Filipino, Thai, Vietnamese, and Caucasian). Sequence variation from the revised Cambridge Reference Sequence and genetic distance between these populations were analyzed. There were 108 variable positions with a total of 99 haplotypes. Population-specific positions of MTCYB gene were noted in Tao and Caucasian populations. There were statistically significant differences of genetic distance between Taiwanese Han and Caucasian, between Taiwanese Han and Tao, and between Taiwanese Han and Filipino. A phylogenetic tree presents the genetic distances between these populations. In conclusion, there are sufficient sequence polymorphisms of the MTCYB gene in individuals of different populations, which may be used in the analyses of human ethnic groups in forensic casework. [source]


    EBNA1 sequences in Argentinean pediatric acute and latent Epstein,Barr virus infection reflect circulation of novel South American variants,

    JOURNAL OF MEDICAL VIROLOGY, Issue 10 2010
    Mario Alejandro Lorenzetti
    Abstract Epstein,Barr virus (EBV) is related to the development of lymphomas and is also the etiological agent for infectious mononucleosis (IM). Sequence variation of the EBNA1 gene, consistently expressed in all EBV-positive cells, has been widely studied. Based on the amino acid at codon 487 five major EBNA1 variants have been described, two closely related prototypic variants (P-ala and P-thr) and three variant sequences (V-leu, V-val, and V-pro). Sub-variants were then further classified based on mutations other than the originally described. While several studies proposed associations with tumors and/or anatomical compartments, others argued in favor of a geographical distribution of these variants. In the present study, EBNA1 variants in 11 pediatric patients with IM and 19 pediatric EBV lymphomas from Argentina were compared as representatives of benign and malignant infection in children, respectively. A 3-month follow-up study of EBNA1 variants in peripheral blood cells and in oral secretions of patients with IM was performed. A new V-ala variant which includes five V-ala sub-variants and three new V-leu sub-variants was described. These data favor the geographical association hypothesis since no evidence for a preferential compartment distribution of EBNA1 variants and sub-variants was found. This is the first study to characterize EBNA1 variants in pediatric patients with infection mononucleosis worldwide. J. Med. Virol. 82:1730,1738, 2010. © 2010 Wiley-Liss, Inc. [source]


    Sequence variation in the hypervariable region 1 of hepatitis C virus and posttransplantation recurrent hepatitis

    LIVER TRANSPLANTATION, Issue 10 2003
    Enrico Silini
    Hepatitis C virus (HCV) shows remarkable genetic variation in both populations and individuals, in whom it circulates as quasispecies (QS). Sequence variation within an infected host has adaptive significance and reflects the modes and intensity of selection mechanisms operating on the virus. We investigated the sequence diversity of hypervariable region 1 of HCV in liver transplant recipients and correlated it with the recurrence of hepatitis. Twenty-six patients were considered during a 2-year period; all had graft reinfection, and 14 patients developed hepatitis recurrence. Cloned sequences were obtained from sera collected before or within 1 month after orthotopic liver transplantation (OLT) and at 3 and 24 months thereafter. Sequence diversity within single sera and over consecutive samples was analyzed quantitatively by matrix comparison and phylogenetic analysis. Propagation of viral QS in the graft was markedly dependent on individual factors. Viral QS in post-OLT sera were less complex and evolved slower compared with immunocompetent subjects with chronic hepatitis. Sequence variation was greater during the first 3 months post-OLT than during the remaining period. Genetic diversity within single samples was not related to hepatitis recurrence or other clinical features. Conversely, sequence diversity over consecutive samples was reduced in patients who experienced hepatitis recurrence, in particular, in those infected with genotype 1b and with an HLA-DR mismatched graft. Selection of viral sequences was markedly impaired in liver transplant recipients and tended to be greater early after OLT. Reduced sequence turnover correlated negatively with the outcome of graft reinfection. [source]


    Intraspecific variation and population structure of the German cockroach, Blattella germanica, revealed with RFLP analysis of the non-transcribed spacer region of ribosomal DNA

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2007
    D. V. MUKHA
    Abstract Little information is available on genetic variation within and between populations of pest cockroaches. In this study, intraspecific HindIII polymorphism was investigated in the German cockroach, Blattella germanica (Linnaeus) (Dictyoptera, Blattaria: Blattellidae), using restriction fragment length polymorphisms (RFLP) of the non-transcribed spacer (NTS) region of ribosomal DNA (rDNA). Individual male insects were collected from infestations at three different pig farms. Each population was characterized by HindIII restriction fragment frequencies and haplotype (a particular X-chromosome pattern) frequencies. The inheritance of the X-chromosome HindIII rDNA patterns over 12 generations (3 years) follows Mendelian patterns, and the stability of this polymorphic marker indicates infrequent genetic recombination of variable sites. Although pairwise genetic distance measures were uncorrelated with geographical distance, the pattern of genetic differentiation of the three cockroach populations suggests that human-mediated transport of cockroaches is an important force in shaping the population genetic structure of cockroach infestations, at least at the regional scale of 10,100 km. Sequence variation in the ribosomal NTS is a useful marker, and RFLP of rDNA is a simple, robust and reproducible technique for differentiating recently diverged cockroach populations. [source]


    Phylogenetic divergence in leatherside chub (Gila copei) inferred from mitochondrial cytochrome b sequences

    MOLECULAR ECOLOGY, Issue 8 2000
    Jerald B. Johnson
    Abstract We examined intra-specific phylogenetic relationships in leatherside chub, Gila copei. The complete mitochondrial (mt) cytochrome b gene (1140 bp) was sequenced for 30 individuals from 10 populations that span the geographical distribution of this species. Traditional phylogenetic analyses revealed two deeply divergent and evolutionarily distinct mtDNA clades that are geographically separated in northern and southern drainage basins. Inter-population sequence variation between clades ranged from 7.7 to 8.1%. The northern clade was genetically more similar and phylogenetically more closely related to the selected out-group Lepidomeda m. mollispinus than to the southern clade, suggesting that the taxonomy of this species may require revision. Sequence variation among populations within clades ranged from 0 to 0.3% in the north and from 0 to 0.7% in the south. Statistical parsimony was used to construct phylogenetic networks of haplotypes within clades. Nested clade analysis revealed that geographical fragmentation has played an important role in genetic structuring within northern and southern clades. [source]


    Molecular sexing and sources of CHD1-Z/W sequence variation in Hawaiian birds

    MOLECULAR ECOLOGY RESOURCES, Issue 4 2006
    SUSAN I. JARVI
    Abstract Sequence information from 28 CHD1 gene fragments reveals that a primary source of variability in CHD1-W genes is a variable intron microsatellite; a single-codon deletion was found in the 3, exon in one species. Sequence variation of CHD1-Z genes was detected in males that altered polymerase chain reaction (PCR) fragment length. Three sets of CHD1-based primers were evaluated for sex determination in 12 endemic and 8 alien Hawaiian species, including one of the last po'o-uli. Combined, these primers provide a reliable means of sex determination in most species (including the po'o-uli), and have produced a valuable reference database for future expanded population-level studies. [source]


    Sequence variation of intergenic mitochondrial DNA spacers (mtDNA-IGS) of Phytophthora infestans (Oomycetes) and related species

    MOLECULAR ECOLOGY RESOURCES, Issue 1 2003
    R. A. M. Wattier
    Abstract The potato late-blight disease is caused by the pseudofungus Phytophthora infestans (Oomycetes). This pathogen was of historical importance as it caused the Irish Potato Famine. There is currently a worldwide resurgence of the disease. Following worldwide migrations as well as being able to discriminate P. infestans from related species are key issues. We present sequence variation of five inter-genic mitochondrial DNA spacers (mtDNA-IGS) for P. infestans and four related taxa. Intra and inter-taxon variation was observed showing potential for both molecular ecology and molecular systematic. [source]


    Variation of the melanocortin 1 receptor gene in the macaques

    AMERICAN JOURNAL OF PRIMATOLOGY, Issue 8 2008
    Kazuhiro Nakayama
    Abstract Melanocortin 1 receptor (MC1R), a G-coupled seven-transmembrane receptor protein, plays a key role in the regulation of melanin synthesis in mammals. Sequence variation of the MC1R gene (MC1R) has been associated with pigmentation phenotypes in humans and in several animal species. The macaques (genus Macaca) are known to show a marked inter-specific variation in coat color although the causative genetic variation remains unclear. We investigated nucleotide sequences of the MC1R in 67 individuals of 18 macaque species with different coat color phenotypes including black and agouti. Twenty-eight amino acid replacements were identified in the macaques, but none of these amino acid replacements could explain the black coat color of Macaca silenus and the Sulawesi macaque species. Our molecular evolutionary analysis has revealed that nonsynonymous substitution/synonymous substitution (dN/dS) ratio of the MC1R has not been uniform in the macaque groups and, moreover, their coat color and dN/dS ratio were not related. These results suggest that the MC1R is unlikely to be responsible for the coat color variation of the macaques and functions of MC1R other than pigmentation might be associated with the different selective pressures on the MC1R in macaques. Am. J. Primatol. 70:778,785, 2008. © 2008 Wiley-Liss, Inc. [source]


    Sequence variation in ,-methylacyl-CoA racemase and risk of early-onset and familial prostate cancer

    THE PROSTATE, Issue 14 2007
    Albert M. Levin
    Abstract BACKGROUND Expression of the ,-methylacyl-CoA racemase (AMACR) gene has been established as a sensitive and specific biomarker for the diagnosis of prostate cancer. An initial study has also suggested that the risk of familial (but not sporadic) prostate cancer may be associated with germline variation in the AMACR gene. METHODS In a study of brothers discordant for the diagnosis of prostate cancer (including 449 affected and 394 unaffected men) from 332 familial and early-onset prostate cancer families, we used conditional logistic regression and family-based association tests to investigate the association between prostate cancer and five single nucleotide polymorphisms (SNPs) tagging common haplotype variation within the coding and regulatory regions of AMACR. RESULTS The strongest evidence for prostate cancer association was for SNP rs3195676, with an estimated odds ratio of 0.58 (95% confidence interval,=,0.38,0.90; P,=,0.01 for a recessive model). This non-synonymous SNP (nsSNP) results in a methionine-to-valine substitution at codon 9 (M9V) in exon 2 of the AMACR gene. Three additional nsSNPs showed suggestive evidence for prostate cancer association (P,,,0.10). CONCLUSIONS Our results confirm an initial report of association between the AMACR gene and the risk of familial prostate cancer. These findings emphasize the value of studying early-onset and familial prostate cancer when attempting to identify genetic variation associated with prostate cancer. Prostate 67: 1507,1513, 2007. © 2007 Wiley-Liss, Inc. [source]


    Sequence variation at the human ABO locus

    ANNALS OF HUMAN GENETICS, Issue 1 2002
    S. P. YIP
    The ABO blood group is the most important blood group system in transfusion medicine. Since the ABO gene was cloned and the molecular basis of the three major alleles delineated about 10 years ago, the gene has increasingly been examined by a variety of DNA-based genotyping methods and analysed in detail by DNA sequencing. A few coherent observations emerge from these studies. First, there is extensive sequence heterogeneity underlying the major ABO alleles that produce normal blood groups A, B, AB and O when in correct combination with other alleles. Second, there is also extensive heterogeneity underlying the molecular basis of various alleles producing ABO subgroups such as A2, Ax and B3. There are over 70 ABO alleles reported to date and these alleles highlight the extensive sequence variation in the coding region of the gene. A unifying system of nomenclature is proposed to name these alleles. Third, extensive sequence variation is also found in the non-coding region of the gene, including variation in minisatellite repeats in the 5, untranslated region (UTR), 21 single nucleotide polymorphisms (SNPs) in intron 6 and one SNP in the 3, UTR. The haplotypes of these variations reveal a specific relationship with the major ABO alleles. Fourth, excluding the common alleles, about half of the remaining alleles are due to new mutations and the other half can better be explained by intragenic recombination (both crossover and gene conversion) between common alleles. In particular, the recombination sites in hybrid alleles can be quite precisely defined through haplotype analysis of the SNPs in intron 6. This indicates that recombination is equally as important as point mutations in generating the genetic diversity of the ABO locus. Finally, a large number of ABO genotyping methods are available and are based on restriction analysis, allele specific amplification, mutation screening techniques or their combinations. [source]


    DNA sequence variation in the ITS-1 rDNA subunit and host relationships in sorghum midge, Stenodiplosis sorghicola (Coquillett) (Diptera: Cecidomyiidae), in Australia

    AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2002
    Bradley C Congdon
    Abstract Sequence variation in the internal transcribed spacer (ITS-1) ribosomal DNA subunit was examined for sorghum midge obtained from introduced and native hosts in south-eastern and central Queensland. No variation was observed relative to host plant or geographical distance for midges collected from two introduced hosts, grain sorghum (Sorghum bicolor) and Johnson grass (S. halepense); however, sequence differences were observed between midges from introduced and native hosts and among midges from a single native host, slender bluegrass (Dichanthium affine). No evidence was observed of introduced midges on native hosts, or vice versa. These results agree with previously hypothesised host distributions for native and introduced midges in Australia, and expand the sample of introduced hosts to include Johnson grass. They suggest that Stenodiplosis sorghicola, the principal midge infesting grain sorghum, is also the most common species on Johnson grass. This confirms that Johnson grass plays a role in the population dynamics of S. sorghicola and suggests that midges originating from Johnson grass may influence levels of infestation in grain sorghum. [source]


    Molecular basis of Refsum disease: Sequence variations in Phytanoyl-CoA Hydroxylase (PHYH) and the PTS2 receptor (PEX7),

    HUMAN MUTATION, Issue 3 2004
    Gerbert A. Jansen
    Abstract Refsum disease has long been known to be an inherited disorder of lipid metabolism characterized by the accumulation of phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) caused by an ,-oxidation deficiency of this branched chain fatty acid in peroxisomes. The mechanism of phytanic acid ,-oxidation and the enzymes involved had long remained mysterious, but they have been resolved in recent years. This has led to the resolution of the molecular basis of Refsum disease. Interestingly, Refsum disease is genetically heterogeneous; two genes, PHYH (also named PAHX) and PEX7, have been identified to cause Refsum disease, as reviewed in this work. Hum Mutat 23:209-218, 2004. © 2004 Wiley-Liss, Inc. [source]


    Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission

    MOLECULAR MICROBIOLOGY, Issue 6 2010
    Buxin Chen
    Summary Self-perpetuating amyloid-based protein isoforms (prions) transmit neurodegenerative diseases in mammals and phenotypic traits in yeast. Although mechanisms that control species specificity of prion transmission are poorly understood, studies of closely related orthologues of yeast prion protein Sup35 demonstrate that cross-species prion transmission is modulated by both genetic (specific sequence elements) and epigenetic (prion variants, or ,strains') factors. Depending on the prion variant, the species barrier could be controlled at the level of either heterologous co-aggregation or conversion of the aggregate-associated heterologous protein into a prion polymer. Sequence divergence influences cross-species transmission of different prion variants in opposing ways. The ability of a heterologous prion domain to either faithfully reproduce or irreversibly switch the variant-specific prion patterns depends on both sequence divergence and the prion variant. Sequence variations within different modules of prion domains contribute to transmission barriers in different cross-species combinations. Individual amino acid substitutions within short amyloidogenic stretches drastically alter patterns of cross-species prion conversion, implicating these stretches as major determinants of species specificity. [source]


    Cover Picture: Electrophoresis 20'2008

    ELECTROPHORESIS, Issue 20 2008
    Article first published online: 7 NOV 200
    Issue 20/08 has an emphasis on "Bioanalysis" since it comprises 9 research articles on this topic including the human ABO genotyping, proteins markers of dysfunctioning pancreatic beta cells, alpha amylase depletion from human saliva, analysis of high molecular mass proteins by 2-DE, analysis of the oxidation products of metallothionein, determination of pathogenic bacteria by CE, boronate affinity saccharide electrophoresis for carbohydrate analysis, fluorophore-assisted carbohydrate electrophoresis, and glycan analysis by CGE. In addition, this issue includes a "Fast Track" article on the sequence variation in part of the 60 kDa glycoprotein gene within Cryptosporidium hominis and Cryptosporidium parvum isolates from citizens of the UK, which have been inferred to have been infected while traveling abroad or in the UK. [source]


    Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance

    ELECTROPHORESIS, Issue 13 2008
    Ming-Wei Li
    Abstract Sequence variability in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among and within Toxocara canis, T. cati, T. malaysiensis, T. vitulorum and Toxascaris leonina from different geographical origins was examined by a mutation-scanning approach. A portion of the cox1 gene (pcox1), a portion of the nad1 and nad4 genes (pnad1 and pnad4) were amplified separately from individual ascaridoid nematodes by polymerase chain reaction and the amplicons analyzed by single-strand conformation polymorphism (SSCP). Representative samples displaying sequence variation in SSCP profiles were subjected to sequencing in order to define genetic markers for their specific identification and differentiation. While the intra-specific sequence variations within each of the five ascaridoid species were 0.2,3.7% for pcox1, 0,2.8% for pnad1 and 0,2.3% for pnad4, the inter-specific sequence differences were significantly higher, being 7.9,12.9% for pcox1, 10.7,21.1% for pnad1 and 12.9,21.7% for pnad4, respectively. Phylogenetic analyses based on the combined sequences of pcox1, pnad1 and pnad4 revealed that the recently described species T. malaysiensis was more closely related to T. cati than to T. canis. These findings provided mtDNA evidence for the validity of T. malaysiensis and also demonstrated clearly the usefulness and attributes of the mutation-scanning sequencing approach for studying the population genetic structures of these and other nematodes of socio-economic importance. [source]


    A New Chrna4 Mutation with Low Penetrance in Nocturnal Frontal Lobe Epilepsy

    EPILEPSIA, Issue 7 2003
    Tobias Leniger
    Summary: Purpose: To identify and characterize the mutation(s) causing nocturnal frontal lobe epilepsy in a German extended family. Methods: Neuronal nicotinic acetylcholine receptor (nAChR) subunit genes were screened by direct sequencing. Once a CHRNA4 mutation was identified, its biophysical and pharmacologic properties were characterized by expression experiments in Xenopus oocytes. Results: We report a new CHRNA4 mutation, causing a ,4-T265I amino acid exchange at the extracellular end of the second transmembrane domain (TM). Functional studies of ,4-T265I revealed an increased ACh sensitivity of the mutated receptors. ,4-T265I is associated with an unusual low penetrance of the epilepsy phenotype. Sequencing of the TM1-TM3 parts of the 1 known nAChR subunits did not support a two-locus model involving a second nAChR sequence variation. Conclusions: nAChR mutations found in familial epilepsy are not always associated with an autosomal dominant mode of inheritance. ,4-T265I is the first nAChR allele showing a markedly reduced penetrance consistent with a major gene effect. The low penetrance of the mutation is probably caused by unknown genetic or environmental factors or both. [source]


    INTEGRATING EVOLUTIONARY AND FUNCTIONAL APPROACHES TO INFER ADAPTATION AT SPECIFIC LOCI

    EVOLUTION, Issue 9 2010
    Jay F. Storz
    Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally, population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation. [source]


    BALANCING SELECTION, RANDOM GENETIC DRIFT, AND GENETIC VARIATION AT THE MAJOR HISTOCOMPATIBILITY COMPLEX IN TWO WILD POPULATIONS OF GUPPIES (POECILIA RETICULATA)

    EVOLUTION, Issue 12 2006
    Cock van Oosterhout
    Abstract Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne, 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s 0.2) and lowland (s, 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift. [source]


    MULTILOCUS ANALYSES OF ADMIXTURE AND INTROGRESSION AMONG HYBRIDIZING HELICONIUS BUTTERFLIES

    EVOLUTION, Issue 6 2006
    Marcus R. Kronforst
    Abstract Introgressive hybridization is an important evolutionary process and new analytical methods provide substantial power to detect and quantify it. In this study we use variation in the frequency of 657 AFLP fragments and DNA sequence variation from 15 genes to measure the extent of admixture and the direction of interspecific gene flow among three Heliconius butterfly species that diverged recently as a result of natural selection for Müllerian mimicry, and which continue to hybridize. Bayesian clustering based on AFLP genotypes correctly delineated the three species and identified four H. cydno, three H. pachinus, and three H. melpomene individuals that were of mixed ancestry. Gene genealogies revealed substantial shared DNA sequence variation among all three species and coalescent simulations based on the Isolation with Migration (IM) model pointed to interspecific gene flow as its cause. The IM simulations further indicated that interspecific gene flow was significantly asymmetrical, with greater gene flow from H. pachinus into H. cydno (2Nm 5 4.326) than the reverse (2Nm 5 0.502), and unidirectional gene flow from H. cydno and H. pachinus into H. melpomene (2Nm 5 0.294 and 0.252, respectively). These asymmetries are in the directions expected based on the genetics of wing patterning and the probability that hybrids of various phenotypes will survive and reproduce in different mimetic environments. This empirical demonstration of extensive interspecific gene flow is in contrast to a previous study which found little evidence of gene flow between another pair of hybridizing Heliconius species, H. himera and H. erato, and it highlights the critical role of natural selection in maintaining species diversity. Furthermore, these results lend support to the hypotheses that phenotypic diversification in the genus Heliconius has been fueled by introgressive hybridization and that reinforcement has driven the evolution of assortative mate preferences. [source]


    PHYLOGEOGRAPHIC STRUCTURE AND CRYPTIC SPECIATION IN THE TRANS-ANTARCTIC MOSS PYRRHOBRYUM MNIOIDES

    EVOLUTION, Issue 2 2003
    Stuart F. McDaniel
    Abstract Many bryophyte species have distributions that span multiple continents. The hypotheses historically advanced to explain such distributions rely on either long-distance spore dispersal or slow rates of morphological evolution following ancient continental vicariance events. We use phylogenetic analyses of DNA sequence variation at three chloroplast loci (atpB-rbcL spacer, rps4 gene, and trnL intron and 3,spacer) to examine these two hypotheses in the trans-Antarctic moss Pyrrhobryum mnioides. We find: (1) reciprocal monophyly of Australasian and South American populations, indicating a lack of intercontinental dispersal; (2) shared haplotypes between Australia and New Zealand, suggesting recent or ongoing migration across the Tasman Sea; and (3) reciprocal monophyly among Patagonian and neotropical populations, suggesting no recent migration along the Andes. These results corroborate experimental work suggesting that spore features may be critical determinants of species range. We use the mid-Miocene development of the Atacama Desert, 14 million years ago, to calibrate a molecular clock for the tree. The age of the trans-Antarctic disjunction is estimated to be 80 million years ago, consistent with Gondwanan vicariance, making it among the most ancient documented cases of cryptic speciation. These data are in accord with niche conservatism, but whether the morphological stasis is a product of stabilizing selection or phylogenetic constraint is unknown. [source]


    Microevolutionary support for a developmental hourglass: gene expression patterns shape sequence variation and divergence in Drosophila

    EVOLUTION AND DEVELOPMENT, Issue 5 2008
    Tami Cruickshank
    SUMMARY A central goal of evolutionary developmental biology (Evo-Devo) is to synthesize comparative molecular developmental genetics and its description of the dynamic relationship between genotype and phenotype with the microevolutionary processes (mutation, random drift, and selection) of population genetics. To this end, we analyzed sequence variation of five gene classes that act sequentially to shape early embryo development in Drosophila: maternal, gap, pair-rule, segment polarity, and segment identity genes. We found two related patterns: (1) a microevolutionary pattern, wherein relative sequence variation within species is 2- to 3-fold higher for maternal-effect genes than for any other gene class; and, (2) a macroevolutionary pattern, wherein the relative sequence divergence among species for maternal-effect genes is 2- to 4-fold greater than for any other gene class. Both patterns are qualitatively and quantitatively consistent with the predictions of microevolutionary theory. Our findings connect within-species genetic variation to between-species divergence and shed light on the controversy over the existence of a "developmental hourglass," where mid-embryonic stages are more evolutionarily constrained than either earlier or later stages. Because maternal-effect genes experience relaxed selective constraint relative to zygotic-effect genes, they explore a wider mutational and phenotypic space. As a result, early acting maternal-effect genes diverge more widely across taxa and thereby broaden the base of the developmental hourglass. In contrast, later acting zygotic genes are relatively more constrained and limited in their diversification across taxa, narrowing the waist of the developmental hourglass. This pattern is obscured by genes with both maternal and zygotic expression, which experience the strongest evolutionary constraint. [source]


    Targeted gene analysis in Ulmus americana and U. pumila tissues

    FOREST PATHOLOGY, Issue 2 2008
    C. Nasmith
    Summary Steady-state gene expression was compared between Dutch elm disease (DED)-susceptible Ulmus americana and DED-resistant U. pumila callus, leaf midrib, root and inner bark tissues. Stress-related cDNAs including phenylalanine ammonia-lyase (PAL), chitinase (CHT) and polygalacturonase-inhibiting protein (PGIP) were isolated and compared following RT-PCR of elm tissues. Complete CHT and partial PAL and PGIP cDNA transcripts were identified, each displaying sequence variation between elm species. These transcripts were Dig-labelled and subsequently used for northern analyses of the elm tissues. Midrib and root tissue displayed highest steady-state gene expression compared with inner bark and callus tissues. A modified nucleic acid isolation technique was necessary for downstream RNA analyses. Lithium chloride and polyvinylpyrrolidone were critical for efficient removal of polysaccharides and phenolics associated with some of the elm tissues. Steady-state gene expression is discussed in relation to the tissues investigated. The use of tissues other than in vitro callus culture more closely represents the tissues associated with the elm's vascular response to DED. [source]


    Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawal

    GENES, BRAIN AND BEHAVIOR, Issue 5 2008
    D. L. Denmark
    We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics. [source]


    Multiple endocrine neoplasia type 2 RET protooncogene database: Repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations,

    HUMAN MUTATION, Issue 4 2009
    Rebecca L. Margraf
    Abstract Multiple endocrine neoplasia type 2 (MEN2) is an inherited, autosomal-dominant disorder caused by deleterious mutations within the RET protooncogene. MEN2 RET mutations are mainly heterozygous, missense sequence changes found in RET exons 10, 11, and 13,16. Our group has developed the publicly available, searchable MEN2 RET database to aid in genotype/phenotype correlations, using Human Genome Variation Society recommendations for sequence variation nomenclature and database content. The MEN2 RET database catalogs all RET sequence variation relevant to the MEN2 syndromes, with associated clinical information. Each database entry lists a RET sequence variation's location within the RET gene, genotype, pathogenicity classification, MEN2 phenotype, first literature reference, and comments (which may contain information on other clinical features, complex genotypes, and additional literature references). The MEN2 phenotype definitions were derived from the International RET Mutation Consortium guidelines for classification of MEN2 disease phenotypes. Although nearly all of the 132 RET sequence variation entries initially cataloged in the database were from literature reports, novel sequence variation and updated phenotypic information for any existing database entry can be submitted electronically on the database website. The database website also contains links to selected MEN2 literature reviews, gene and protein information, and RET reference sequences. The MEN2 RET database (www.arup.utah.edu/database/MEN2/MEN2_welcome.php) will serve as a repository for MEN2-associated RET sequence variation and reference for RET genotype/MEN2 phenotype correlations. Hum Mutat 0,1,9, 2009. © 2009 Wiley-Liss, Inc. [source]


    Masking selected sequence variation by incorporating mismatches into melting analysis probes,

    HUMAN MUTATION, Issue 3 2006
    Rebecca L. Margraf
    Abstract Hybridization probe melting analysis can be complicated by the presence of sequence variation (benign polymorphisms or other mutations) near the targeted mutation. We investigated the use of "masking" probes to differentiate alleles with similar probe melting temperatures. Selected sequence variation was masked by incorporating mismatches (deletion, unmatched nucleotide, or universal base) into hybridization probes at the polymorphic location. Such masking probes create a probe/target mismatch with all possible alleles at the selected polymorphic location. Any allele with additional variation at another site is identified by a lower probe melting temperature than alleles that vary only at the masked position. This "masking technique" was applied to RET protooncogene and HPA6 mutation detection using unlabeled hybridization probes, a saturating dsDNA dye, and high-resolution melting analysis. Masking probes clearly distinguished all targeted mutations from polymorphisms when at least 1 base pair (bp) separated the mutation from the masked variation. We were able to mask polymorphisms immediately adjacent to mutations, except in certain cases, such as those involving single-base deletion probes when both adjacent positions had the same polymorphic nucleotides. The masking probes can also localize mutations to specific codons or nucleotide positions. Masking probes can simplify melting analysis of complex regions and eliminate the need for sequencing. Hum Mutat 27(3), 269,278, 2006. © 2006 Wiley-Liss, Inc. [source]