Sequence Identity (sequence + identity)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Sequence Identity

  • acid sequence identity
  • amino acid sequence identity
  • high sequence identity
  • low sequence identity
  • nucleotide sequence identity
  • significant sequence identity


  • Selected Abstracts


    Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture

    ENVIRONMENTAL MICROBIOLOGY, Issue 10 2010
    Nidal Abu Laban
    Summary Anaerobic benzene degradation was studied with a highly enriched iron-reducing culture (BF) composed of mainly Peptococcaceae- related Gram-positive microorganisms. The proteomes of benzene-, phenol- and benzoate-grown cells of culture BF were compared by SDS-PAGE. A specific benzene-expressed protein band of 60 kDa, which could not be observed during growth on phenol or benzoate, was subjected to N-terminal sequence analysis. The first 31 amino acids revealed that the protein was encoded by ORF 138 in the shotgun sequenced metagenome of culture BF. ORF 138 showed 43% sequence identity to phenylphosphate carboxylase subunit PpcA of Aromatoleum aromaticum strain EbN1. A LC/ESI-MS/MS-based shotgun proteomic analysis revealed other specifically benzene-expressed proteins with encoding genes located adjacent to ORF 138 on the metagenome. The protein products of ORF 137, ORF 139 and ORF 140 showed sequence identities of 37% to phenylphosphate carboxylase PpcD of A. aromaticum strain EbN1, 56% to benzoate-CoA ligase (BamY) of Geobacter metallireducens and 67% to 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX) of A. aromaticum strain EbN1 respectively. These genes are proposed as constituents of a putative benzene degradation gene cluster (,17 kb) composed of carboxylase-related genes. The identified gene sequences suggest that the initial activation reaction in anaerobic benzene degradation is probably a direct carboxylation of benzene to benzoate catalysed by putative anaerobic benzene carboxylase (Abc). The putative Abc probably consists of several subunits, two of which are encoded by ORFs 137 and 138, and belongs to a family of carboxylases including phenylphosphate carboxylase (Ppc) and 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX). [source]


    Protein disulfide isomerase family proteins involved in soybean protein biogenesis

    FEBS JOURNAL, Issue 3 2007
    Hiroyuki Wadahama
    Protein disulfide isomerase family proteins are known to play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill cv. Jack) mRNA by RT-PCR using forward and reverse primers designed from the expressed sequence tag clone sequences. The cDNA encodes a protein of either 364 or 362 amino acids, named GmPDIS-1 or GmPDIS-2, respectively. The nucleotide and amino acid sequence identities of GmPDIS-1 and GmPDIS-2 were 68% and 74%, respectively. Both proteins lack the C-terminal, endoplasmic reticulum-retrieval signal, KDEL. Recombinant proteins of both GmPDIS-1 and GmPDIS-2 were expressed in Escherichia coli as soluble folded proteins that showed both an oxidative refolding activity of denatured ribonuclease A and a chaperone activity. Their domain structures were identified as containing two thioredoxin-like domains, a and a,, and an ERp29c domain by peptide mapping with either trypsin or V8 protease. In cotyledon cells, both proteins were shown to distribute to the endoplasmic reticulum and protein storage vacuoles by confocal microscopy. Data from coimmunoprecipitation and crosslinking experiments suggested that GmPDIS-1 associates with proglycinin, a precursor of the seed storage protein glycinin, in the cotyledon. Levels of GmPDIS-1, but not of GmPDIS-2, were increased in cotyledons, where glycinin accumulates during seed development. GmPDIS-1, but not GmPDIS-2, was induced under endoplasmic reticulum-stress conditions. [source]


    Purification and cDNA cloning of nitric oxide reductase cytochrome P450nor (CYP55A4) from Trichosporon cutaneum

    FEBS JOURNAL, Issue 11 2001
    Li Zhang
    Cytochrome P450nor is involved in fungal denitrification as nitric oxide (NO) reductase. Although the heme protein has been known to occur in restricted species of fungi that belong to ascomycotina, we have previously suggested that it would also occur in the yeast Trichosporon cutaneum, which is phylogenetically far from those P450nor-producing ascomycetous fungi. Here we isolated and characterized the heme protein from the basidiomycetous yeast T. cutaneum. P450nor of the yeast (TcP450nor) exhibited properties in terms of catalysis, absorption spectrum and molecular mass that are almost identical to those of its counterparts in ascomycetous fungi. We also isolated and sequenced its cDNA. The predicted primary structure of TcP450nor showed high sequence identities (around 65%) to those of other P450nors, indicating that they belong to the same family. TcP450nor protein cofractionated with cytochrome c oxidase by subcellular fractionation and its predicted primary structure contained an extension on its amino terminus that is characteristic of a mitochondrial-targeting signal, indicating that it is a mitochondrial protein like some of the isoforms of other fungi. On the other hand, TcP450nor was unique in that inducers such as nitrate, nitrite, or NO were not required for its production in the cells. The occurrence of P450nor across the subdivisions of eumycota suggests that P450nor and denitrification are distributed more universally among fungi than was previously thought. [source]


    Evaluating low level sequence identities

    FEBS JOURNAL, Issue 2 2001
    AROM homologous?, Are Aspergillus QUTA
    A review published several years ago [Hawkins, A.R. & Lamb, H.K. (1995) Eur. J. Biochem. 232, 7,18] proposed that genetic, biochemical and physiological data can override sequence comparison in the determination of homology in instances where structural information is unavailable. Their lead example was the hypothesis that the transcriptional activator protein for quinate catabolism in Aspergillus nidulans, QUTA, is derived from the pentafunctional AROM protein by a gene duplication followed by cleavage [Hawkins, A.R., Lamb, H.K., Moore, J.D. & Roberts, C.F. (1993) Gene136, 49,54]. We tested this hypothesis by a sensitive combination of position-specific log-odds scoring matrix methods. The position-specific log-odds scoring matrices were derived from a large number of 3-dehydroquinate synthase and 5- enolpyruvylshikimate-3-phosphate synthase domains that were proposed to be the domains from the AROM protein that gave rise to the transcriptional activator protein for quinate metabolism. We show that the degree and pattern of similarity between these position-specific log-odds scoring matrices and the transcriptional activator protein for quinate catabolism in A. nidulans is that expected for random sequences of the same composition. This level of similarity provides no support for the suggested gene duplication and cleavage. The lack of any trace of evidence for homology following a comprehensive sequence analysis indicates that the homology hypothesis is without foundation, underlining the necessity to accept only similarity of sequence and/or structure as evidence of evolutionary relatedness. Further, QUTA is homologous throughout its entire length to an extended family of fungal transcriptional regulatory proteins, rendering the hypothesized QUTA,AROM homology even more problematic. [source]


    Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti

    INSECT MOLECULAR BIOLOGY, Issue 4 2002
    D. W. Severson
    Abstract A composite genetic linkage map for the yellow fever mosquito Aedes aegypti was constructed based on restriction fragment length polymorphism (RFLP), single nucleotide polymorphism (SNP) and single strand conformation polymorphism (SSCP) markers. The map consists of 146 marker loci distributed across 205 cM, and includes several morphological mutant marker loci. Most of the genetic markers are derived from random cDNAs or Ae. aegypti genes of known function. A number of markers are derived from random genomic DNAs, including several cloned RAPD-PCR fragments, and also several cDNAs from Drosophila melanogaster. Most of the random cDNAs (80.2%) have high BlastX sequence identities to known genes, with the majority of matches to genes from D. melanogaster. Access to sequence data for all markers will facilitate their continued development for use in high-throughput SNP marker analyses and also provides additional physical anchor points for an anticipated genome sequencing effort. [source]


    Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP)

    JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 4 2005
    T.H. Kim
    Summary ADRP plays an important role in regulating lipid storage in various cells. We investigated the ADRP gene as a candidate gene for intramuscular fat deposition and marbling traits in pigs. A full-length transcript of porcine ADRP was cloned by RT-PCR and RACE. The porcine ADRP cDNA (1848 bp) contains a 1377-bp open reading frame, encoding a deduced protein of 459 amino acids, which has amino acid sequence identities of 89, 89, 82 and 81% with cattle, human, mouse and rat ADRP genes respectively. The genomic structure and sequence of the porcine ADRP were also analysed using a BAC clone of a Korean native pig. Pig ADRP comprises eight exons spanning approximately 13 kb and is located on chromosome 1 q2.3-q2.7 between microsatellite markers SW2185 and SW974. Several sequence variations were detected from nine different pig breeds. The biological role of this gene and the mapping localization indicated that the porcine ADRP is a possible candidate gene for fat deposition and marbling traits. [source]


    Molecular characterization of VP4, VP6, VP7, NSP4, and NSP5/6 genes identifies an unusual G3P[10] human rotavirus strain

    JOURNAL OF MEDICAL VIROLOGY, Issue 1 2009
    Pattara Khamrin
    Abstract An unusual strain of human rotavirus G3P[10] (CMH079/05) was detected in a stool sample of a 2-year-old child admitted to the hospital with severe diarrhea in Chiang Mai, Thailand. Analysis of the VP7 gene sequence revealed highest identities with unusual human rotavirus G3 strain CMH222 at 98.7% on the nucleotide and 99.6% on the amino acid levels. Phylogenetic analysis of the VP7 sequence confirmed that the CMH079/05 strain formed a cluster with G3 rotavirus reference strains and showed the closest lineage with the CMH222 strain. Analysis of partial VP4 gene of CMH079/05 revealed highest degree of sequence identities with P[10] rotavirus prototype strain 69M at nucleotide and amino acid levels of 92.9% and 94.6%, respectively. Phylogenetic analysis of the VP4 sequence revealed that CMH079/05 and 69M clustered closely together in a monophyletic branch separated from other rotavirus genotypes. To our knowledge, this is a novel G,P combination of G3 and P[10] genotypes. In addition, analyses of VP6, NSP4, and NSP5/6 genes revealed these uncommon genetic characteristics: (i) the VP6 gene differed from the four other known subgroups; (ii) the NSP4 gene was identified as NSP4 genetic group C, an uncommon group in humans; and (iii) the NSP5/6 gene was most closely related with T152, a G12P[9] rotavirus previously isolated in Thailand. The finding of uncommon G3P[10] rotavirus in this pediatric patient provided additional evidence of the genetic diversity of human group A rotaviruses in Chiang Mai, Thailand. J. Med. Virol. 81:176,182, 2009. © 2008 Wiley-Liss, Inc. [source]


    Sequence analysis of genes encoding structural and nonstructural proteins of a human group B rotavirus detected in Calcutta, India

    JOURNAL OF MEDICAL VIROLOGY, Issue 4 2001
    Nobumichi Kobayashi
    Abstract Nucleotide sequences of RNA segments encoding structural proteins(VP4, VP6, and VP7) and nonstructural proteins(NSP1 and NSP3) of a human group B rotavirus CAL-1, which was detected in Calcutta, India, were determined and their relatedness with cognate genes of other group B rotaviruses was analyzed. The CAL-1 genes showed generally high sequence identities (more than 90%) to those of human group B rotavirus, adult diarrheal rotavirus (ADRV) in China, while identities with bovine, murine, and ovine viruses were considerably lower (58,73%). Among RNA segments analyzed, sequence identity of the VP6 gene was relatively high compared with other gene segments. In the CAL-1 VP7 sequence, many characteristics were shared by ADRV, but not by other animal group B rotaviruses. In contrast, VP4 and NSP3 of CAL-1 were single animo acid and 23 amino acids longer than those of ADRV strain, respectively, due to differences of a few nucleotides. These findings suggested that human group B rotaviruses CAL-1 and ADRV might have originated from a common ancestral virus distinct from animal group B rotaviruses reported so far, while some notable sequence differences indicated the distinct nature of these viruses. J. Med. Virol. 64:583,588, 2001. © 2001 Wiley-Liss, Inc. [source]


    Molecular Characterization of a Strain of Squash Leaf Curl China Virus from the Philippines

    JOURNAL OF PHYTOPATHOLOGY, Issue 10 2003
    T. Kon
    Abstract The complete nucleotide sequence of infectious cloned DNA components (A and B) of the causal agent of squash leaf curl disease in the Philippines was determined. DNA-A and DNA-B comprise 2739 and 2705 nucleotides, respectively; the common region is 174 bases in length. Five ORFs were found in DNA-A and two in DNA-B. Partial dimeric clones containing DNA-A and DNA-B, constructed in a binary vector and transformed into Agrobacterium tumefaciens, induced systemic infection in agro-inoculated pumpkin plants (Cucurbita moschata). The total DNA-A sequence was most closely related to that of Squash leaf curl China virus (SLCCNV) (88% identity), although the existence of B component of SLCCNV has not been reported. The deduced coat protein was like that of SLCCNV (98% amino acid sequence identity) and the Philippines virus has low sequence identity to Squash leaf curl virus (SLCV) and Squash mild leaf curl virus (SMLCV) (63 and 64% total nucleotide sequence identities, respectively). From these results, we propose that the Philippines virus be designated Squash leaf curl China virus -[Philippines] (SLCCNV-[PH]). [source]


    Diversity of staphylocoagulase and identification of novel variants of staphylocoagulase gene in Staphylococcus aureus

    MICROBIOLOGY AND IMMUNOLOGY, Issue 7 2008
    Marie Kinoshita
    ABSTRACT Staphylocoagulase (SC) is a major phenotypic determinant of Staphylococcus aureus. Serotype of SC (coagulase type) is used as an epidemiological marker and 10 types (I,X) have been discriminated so far. To clarify genetic diversity of SC within a single and among different serotype(s), we determined approximately 1500 bp-nucleotide sequences of SC gene encoding D1, D2, and central regions (N-terminal half and central regions of SC; SCNC) for a total of 33 S. aureus strains comprising two to three strains from individual coagulase types (I,VIII, X) and 10 strains which were not determined as previously known SC serotypes (ND-strains). Amino acid sequence identities of SCNC among strains with a single coagulase type of II, III, IV, V, VI and X were extremely high (more than 99%), whereas lower identity (56,87%) was observed among different types. In contrast, within a single coagulase type of I, VII, or VIII, sequence divergence was found (lowest identity; 82%). SCNC sequences from the ND-strains were discriminated into two genetic groups with an identity of 71% to each other (tentatively assigned to genotypes [XI] and [XII]), and exhibited less than 86% sequence identities to those of most known coagulase types. All the types [XI] and [XII] strains were methicillin susceptible and belonged to different sequence types from those of coagulase types I,X strains reported so far by multilocus sequence typing. These findings indicated genetic heterogeneity of SC in coagulase types I, VII, and VIII strains, and the presence of two novel SC genotypes related to antigenicity of SC serotypes. [source]


    In silico protein design by combinatorial assembly of protein building blocks

    PROTEIN SCIENCE, Issue 10 2004
    Hui-Hsu (Gavin) Tsai
    Abstract Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share ,20% and ,25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology. [source]


    Alignment of protein sequences by their profiles

    PROTEIN SCIENCE, Issue 4 2004
    Marc A. Marti-Renom
    Abstract The accuracy of an alignment between two protein sequences can be improved by including other detectably related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based alignments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols were significantly better than those of the other tested methods. For example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods, respectively. The new method is currently applied to large-scale comparative protein structure modeling of all known sequences. [source]


    MapQuant: Open-source software for large-scale protein quantification

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2006
    Kyriacos C. Leptos
    Abstract Whole-cell protein quantification using MS has proven to be a challenging task. Detection efficiency varies significantly from peptide to peptide, molecular identities are not evident a,priori, and peptides are dispersed unevenly throughout the multidimensional data space. To overcome these challenges we developed an open-source software package, MapQuant, to quantify comprehensively organic species detected in large MS datasets. MapQuant treats an LC/MS experiment as an image and utilizes standard image processing techniques to perform noise filtering, watershed segmentation, peak finding, peak fitting, peak clustering, charge-state determination and carbon-content estimation. MapQuant reports abundance values that respond linearly with the amount of sample analyzed on both low- and high-resolution instruments (over a 1000-fold dynamic range). Background noise added to a sample, either as a medium-complexity peptide mixture or as a high-complexity trypsinized proteome, exerts negligible effects on the abundance values reported by MapQuant and with coefficients of variance comparable to other methods. Finally, MapQuant's ability to define accurate mass and retention time features of isotopic clusters on a high-resolution mass spectrometer can increase protein sequence coverage by assigning sequence identities to observed isotopic clusters without corresponding MS/MS data. [source]


    Novel cytochrome P450s, CYP6BB1 and CYP6P10, from the salt marsh mosquito Aedes sollicitans (Walker) (Diptera: Culicidae)

    ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2008
    Shaoming Huang
    Abstract Based on the conserved heme-binding region and the charge pair consensus of insect cytochrome P450s, two novel full-length P450 cDNAs, CYP6BB1 and CYP6P10, were cloned from the salt marsh mosquito Aedes sollicitans (Walker). CYP6BB1 and CYP6P10 had open reading frames of 1,518 and 1,521 nucleotides encoding 506 and 507 amino acid residue proteins, respectively. Several alleles with amino acid substitutions were found both in CYP6BB1 and CYP6P10. The deduced proteins are typical microsomal P450s sharing signature sequences with other insect CYP6 P450s. Sequence analysis showed that both CYP6BB1 and CYP6P10 shared highest sequence identities with P450 CYP6P4, 56% and 65%, respectively. Phylogenetic analysis showed both CYP6BB1 and CYP6P10 were grouped into the clade containing several P450s from subfamily CYP6P. Real-time RT-PCR analysis showed CYP6BB1 but not CYP6P10 transcription in females was significantly increased 24 h after a blood meal. Neither CYP6BB1 nor CYP6P10 were life stage or gender specific. Protein expression experiments are needed to determine the functions of these proteins. Arch. Insect Biochem. Physiol. 2007. © 2007 Wiley-Liss, Inc. [source]


    Structure and lability of archaeal dehydroquinase

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2008
    Natasha N. Smith
    Multiple sequence alignments of type I 3-dehydroquinate dehydratases (DQs; EC 4.2.1.10) show that archaeal DQs have shorter helical regions than bacterial orthologs of known structure. To investigate this feature and its relation to thermostability, the structure of the Archaeoglobus fulgidus (Af) DQ dimer was determined at 2.33,Å resolution and its denaturation temperature was measured in vitro by circular dichroism (CD) and differential scanning calorimetry (DSC). This structure, a P212121 crystal form with two 45,kDa dimers in the asymmetric unit, is the first structural representative of an archaeal DQ. Denaturation occurs at 343 ± 3,K at both low and high ionic strength and at 349,K in the presence of the substrate analog tartrate. Since the growth optimum of the organism is 356,K, this implies that the protein maintains its folded state through the participation of additional factors in vivo. The (,,)8 fold is compared with those of two previously determined type I DQ structures, both bacterial (Salmonella and Staphylococcus), which had sequence identities of ,30% with AfDQ. Although the overall folds are the same, there are many differences in secondary structure and ionic features; the archaeal protein has over twice as many salt links per residue. The archaeal DQ is smaller than its bacterial counterparts and lower in regular secondary structure, with its eight helices being an average of one turn shorter. In particular, two of the eight normally helical regions (the exterior of the barrel) are mostly nonhelical in AfDQ, each having only a single turn of 310 -helix flanked by ,-strand and coil. These `protohelices' are unique among evolutionarily close members of the (,,)8 -fold superfamily. Structural features that may contribute to stability, in particular ionic factors, are examined and the implications of having a Tm below the organism's growth temperature are considered. [source]


    Myosins of Babesia bovis: Molecular characterisation, erythrocyte invasion, and phylogeny

    CYTOSKELETON, Issue 4 2002
    A.E. Lew
    Abstract Using degenerate primers, three putative myosin sequences were amplified from Australian isolates of Babesa bovis and confirmed as myosins (termed Bbmyo-A, Bbmyo-B, and Bbmyo-C) from in vitro cultures of the W strain of B. bovis. Comprehensive analysis of 15 apicomplexan myosins suggests that members of Class XIV be defined as those with greater than 35% myosin head sequence identity and that these be further subclassed into groups bearing above 50,60% identity. Bbmyo-A protein bears a strong similarity with other apicomplexan myosin-A type proteins (subclass XIVa), the Bbmyo-B myosin head protein sequence exhibits low identity (35,39%) with all members of Class XIV, and 5,-sequence of Bbmyo-C shows strong identity (60%) with P. falciparum myosin-C protein. Domain analysis revealed five divergent IQ domains within the neck of Pfmyo-C, and a myosin-N terminal domain as well as a classical IQ sequence unusually located within the head converter domain of Bbmyo-B. A cross-reacting antibody directed against P. falciparum myosin-A (Pfmyo-A) revealed a zone of approximately 85 kDa in immunoblots prepared with B. bovis total protein, and immunofluorescence inferred stage-specific myosin-A expression since only 25% of infected erythrocytes with mostly paired B. bovis were immuno-positive. Multiplication of B. bovis in in vitro culture was inhibited by myosin- and actin-binding drugs at concentrations lower than those that inhibit P. falciparum. This study identifies and classifies three myosin genes and an actin gene in B. bovis, and provides the first evidence for the participation of an actomyosin-based motor in erythrocyte invasion in this species of apicomplexan parasite. Cell Motil. Cytoskeleton 52:202,220, 2002. © 2002 Wiley-Liss, Inc. [source]


    Rnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, Tether to the acrosome membranes and the head,tail coupling apparatus during rat spermatid development

    DEVELOPMENTAL DYNAMICS, Issue 7 2009
    Eugene Rivkin
    Abstract We report the cDNA cloning of rat testis Rnf19a, a ubiquitin protein ligase, and show 98% and 93% protein sequence identity of testicular mouse and human Rnf19a, respectively. Rnf19a interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome. During spermatid development, Rnf19a and Psmc3 are initially found in Golgi-derived proacrosomal vesicles. Later on, Rnf19a, Psmc3, and ubiquitin are seen along the cytosolic side of the acrosomal membranes and the acroplaxome, a cytoskeletal plate linking the acrosome to the spermatid nuclear envelope. Rnf19a and Psmc3 accumulate at the acroplaxome marginal ring,manchette perinuclear ring region during spermatid head shaping and in the developing sperm head,tail coupling apparatus and tail. Rnf19a and Psmc3 may interact directly or indirectly with each other, presumably pointing to the participation of the ubiquitin,proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. Developmental Dynamics 238:1851,1861, 2009. © 2009 Wiley-Liss, Inc. [source]


    Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture

    ENVIRONMENTAL MICROBIOLOGY, Issue 10 2010
    Nidal Abu Laban
    Summary Anaerobic benzene degradation was studied with a highly enriched iron-reducing culture (BF) composed of mainly Peptococcaceae- related Gram-positive microorganisms. The proteomes of benzene-, phenol- and benzoate-grown cells of culture BF were compared by SDS-PAGE. A specific benzene-expressed protein band of 60 kDa, which could not be observed during growth on phenol or benzoate, was subjected to N-terminal sequence analysis. The first 31 amino acids revealed that the protein was encoded by ORF 138 in the shotgun sequenced metagenome of culture BF. ORF 138 showed 43% sequence identity to phenylphosphate carboxylase subunit PpcA of Aromatoleum aromaticum strain EbN1. A LC/ESI-MS/MS-based shotgun proteomic analysis revealed other specifically benzene-expressed proteins with encoding genes located adjacent to ORF 138 on the metagenome. The protein products of ORF 137, ORF 139 and ORF 140 showed sequence identities of 37% to phenylphosphate carboxylase PpcD of A. aromaticum strain EbN1, 56% to benzoate-CoA ligase (BamY) of Geobacter metallireducens and 67% to 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX) of A. aromaticum strain EbN1 respectively. These genes are proposed as constituents of a putative benzene degradation gene cluster (,17 kb) composed of carboxylase-related genes. The identified gene sequences suggest that the initial activation reaction in anaerobic benzene degradation is probably a direct carboxylation of benzene to benzoate catalysed by putative anaerobic benzene carboxylase (Abc). The putative Abc probably consists of several subunits, two of which are encoded by ORFs 137 and 138, and belongs to a family of carboxylases including phenylphosphate carboxylase (Ppc) and 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX). [source]


    Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
    Petra Louis
    Summary Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed > 98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P = 0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community. [source]


    Genome sequences of two novel phages infecting marine roseobacters

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2009
    Yanlin Zhao
    Summary Two bacteriophages, DSS3,2 and EE36,1, which infect marine roseobacters Silicibacter pomeroyi DSS-3 and Sulfitobacter sp. EE-36, respectively, were isolated from Baltimore Inner Harbor water. These two roseophages resemble bacteriophage N4, a large, short-tailed phage infecting Escherichia coli K12, in terms of their morphology and genomic structure. The full genome sequences of DSS3,2 and EE36,1 reveal that their genome sizes are 74.6 and 73.3 kb, respectively, and they both contain a highly conserved N4-like DNA replication and transcription system. Both roseophages contain a large virion-encapsidated RNA polymerase gene (> 10 kb), which was first discovered in N4. DSS3,2 and EE36,1 also possess several genes (i.e. ribonucleotide reductase and thioredoxin) that are most similar to the genes in roseobacters. Overall, the two roseophages are highly closely related, and share 80,94% nucleotide sequence identity over 85% of their ORFs. This is the first report of N4-like phages infecting marine bacteria and the second report of N4-like phage since the discovery of phage N4 40 years ago. The finding of these two N4-like roseophages will allow us to further explore the specific phage,host interaction and evolution for this unique group of bacteriophages. [source]


    Molecular link of different stages of the trematode host of Neorickettsia risticii to Acanthatrium oregonense

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2008
    Kathryn E. Gibson
    Summary Neorickettsia risticii, the obligatory intracellular bacterium that causes Potomac horse fever, has been detected in various developmental stages of digenetic trematodes in the environment. Neorickettsia risticii -infected gravid trematodes were identified as Acanthatrium oregonense, based on morphologic keys. However, whether immature trematodes harbouring N. risticii are also A. oregonense was unknown. The objective of this study was to infer the life cycle of N. risticii -positive trematode hosts and transstadial transmission of the bacterium by molecularly characterizing the relationship among adult and immature stages of trematodes confirmed infected with N. risticii. Sequences of 18S ribosomal RNA genes up to 1922 bp in size were obtained from infected adult gravid trematodes, sporocysts and cercariae, and metacercariae. The sequences from the different immature stages of trematode are closely related to those of adult trematodes, some with 100% sequence identity; thus, they likely are life stages of A. oregonense. Comparisons with known 18S ribosomal RNA gene sequences of other digenetic trematodes indicated that all tested stages of the N. risticii -positive trematodes belong to the family Lecithodendriidae, supporting the morphological identification. [source]


    Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2007
    Rodrigo Costa
    Summary The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas -specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas -specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol , 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis. [source]


    Biogeography of the marine actinomycete Salinispora

    ENVIRONMENTAL MICROBIOLOGY, Issue 11 2006
    Paul R. Jensen
    Summary Marine actinomycetes belonging to the genus Salinispora were cultured from marine sediments collected at six geographically distinct locations. Detailed phylogenetic analyses of both 16S rRNA and gyrB gene sequences reveal that this genus is comprised of three distinct but closely related clades corresponding to the species Salinispora tropica, Salinispora arenicola and a third species for which the name ,Salinispora pacifica' is proposed. Salinispora arenicola was cultured from all locations sampled and provides clear evidence for the cosmopolitan distribution of an individual bacterial species. The co-occurrence of S. arenicola with S. tropica and S. pacifica suggests that ecological differentiation as opposed to geographical isolation is driving speciation within the genus. All Salinispora strains cultured to date share greater than 99% 16S rRNA gene sequence identity and thus comprise what has been described as a microdiverse ribotype cluster. The description of this cluster as a new genus, containing multiple species, provides clear evidence that fine-scale 16S rDNA sequence analysis can be used to delineate among closely related species and that more conservative operational taxonomic unit values may significantly underestimate global species diversity. [source]


    Structural and functional differences between the promoters of independently expressed killer cell Ig-like receptors

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2005
    Bergen, Jeroen van
    Abstract Killer Ig-like receptors (KIR) are important for the recognition and elimination of diseased cells by human NK cells. Myeloid leukemia patients given a hematopoietic stem cell transplantation, for example, benefit from KIR-mediated NK alloreactivity directed against the leukemia cells. To establish an effective NK cell repertoire, most KIR genes are expressed stochastically, independently of the others. However, the sequences upstream of the coding regions of these KIR genes are highly homologous to the recently identified KIR3DL1 promoter (91.1,99.6% sequence identity), suggesting that they are regulated by similar if not identical mechanisms of transcriptional activation. We investigated the effects of small sequence differences between the KIR3DL1 promoter and other KIR promoters on transcription factor binding and promoter activity. Surprisingly, electrophoretic mobility shift assays and promoter-reporter assays revealed significant structural and functional differences in the cis-acting elements of these highly homologous KIR promoters, suggesting a key role for transcription factors in independent control of expression of specific KIR loci. Thus, the KIR repertoire may be shaped by a combination of both gene-specific and stochastic mechanisms. [source]


    Major components of a sea urchin block to polyspermy are structurally and functionally conserved

    EVOLUTION AND DEVELOPMENT, Issue 3 2004
    Julian L. Wong
    Summary One sperm fusing with one egg is requisite for successful fertilization; additional sperm fusions are lethal to the embryo. Because sperm usually outnumber eggs, evolution has selected for mechanisms that prevent this polyspermy by immediately modifying the egg extracellular matrix. We focus here on the contribution of cortical granule contents in the sea urchin block to polyspermy to begin to understand how well this process is conserved. We identified each of the major constituents of the fertilization envelope in two species of seaurchins, Strongylocentrotus purpuratus and Lytechinus variegatus, that diverged 30 to 50 million years ago. Our results show that the five major structural components of the fertilization envelope, derived from the egg cortical granules, are semiconserved. Most of these orthologs share sequence identity and encode multiple low-density lipoprotein receptor type A repeats or CUB domains but at least two contain radically different carboxy-terminal repeats. Using a new association assay, we also show that these major structural components are functionally conserved during fertilization envelope construction. Thus, it seems that this population of female reproductive proteins has retained functional motifs while gaining significant sequence diversity,two opposing paths that may reflect cooperativity among the proteins that compose the fertilization envelope. [source]


    Expression of the Artemia trachealess gene in the salt gland and epipod

    EVOLUTION AND DEVELOPMENT, Issue 5 2002
    Brian Mitchell
    SUMMARY The Drosophila trachealess gene encodes a basic-helix-loop-helix-PAS transcription factor that controls the formation of the trachea and salivary duct. An ortholog of trachealess was identified in the brine shrimp, Artemia franciscana, and was shown to be highly conserved by sequence identity. Expression of Artemia trachealess was observed at two sites during development: the naupliar salt gland and the juvenile thoracic epipod. These two organs function at their respective times of development in osmoregulation, an important aspect of brine shrimp physiology. This extends the range of putative functions of trachealess to include formation of osmoregulatory, respiratory, and ductile organs. [source]


    Mouse recombinant protein C variants with enhanced membrane affinity and hyper-anticoagulant activity in mouse plasma

    FEBS JOURNAL, Issue 22 2009
    Michael J. Krisinger
    Mouse anticoagulant protein C (461 residues) shares 69% sequence identity with its human ortholog. Interspecies experiments suggest that there is an incompatibility between mouse and human protein C, such that human protein C does not function efficiently in mouse plasma, nor does mouse protein C function efficiently in human plasma. Previously, we described a series of human activated protein C (APC) Gla domain mutants (e.g. QGNSEDY-APC), with enhanced membrane affinity that also served as superior anticoagulants. To characterize these Gla mutants further in mouse models of diseases, the analogous mutations were now made in mouse protein C. In total, seven mutants (mutated at one or more of positions P10S12D23Q32N33) and wild-type protein C were expressed and purified to homogeneity. In a surface plasmon resonance-based membrane-binding assay, several high affinity protein C mutants were identified. In Ca2+ titration experiments, the high affinity variants had a significantly reduced (four-fold) Ca2+ requirement for half-maximum binding. In a tissue factor-initiated thrombin generation assay using mouse plasma, all mouse APC variants, including wild-type, could completely inhibit thrombin generation; however, one of the variants denoted mutant III (P10Q/S12N/D23S/Q32E/N33D) was found to be a 30- to 50-fold better anticoagulant compared to the wild-type protein. This mouse APC variant will be attractive to use in mouse models aiming to elucidate the in vivo effects of APC variants with enhanced anticoagulant activity. [source]


    A unique lipoylation system in the Archaea

    FEBS JOURNAL, Issue 15 2009
    Lipoylation in Thermoplasma acidophilum requires two proteins
    Members of the 2-oxoacid dehydrogenase multienzyme complex family play a key role in the pathways of central metabolism. Post-translational lipoylation of the dihydrolipoyl acyltransferase component of these complexes is essential for their activity, the lipoyllysine moiety performing the transfer of substrates and intermediates between the different active sites within these multienzyme systems. We have previously shown that the thermophilic archaeon, Thermoplasma acidophilum, has a four-gene cluster encoding the components of such a complex, which, when recombinantly expressed in Escherichia coli, can be assembled into an active multienzyme in vitro. Crucially, the E. coli host carries out the required lipoylation of the archaeal dihydrolipoyl acyltransferase component. Because active 2-oxoacid dehydrogenase multienzyme complexes have never been detected in any archaeon, the question arises as to whether Archaea possess a functional lipoylation system. In this study, we report the cloning and heterologous expression of two genes from Tp. acidophilum whose protein products together show significant sequence identity with the single lipoate protein ligase enzyme of bacteria. We demonstrate that both recombinantly expressed Tp. acidophilum proteins are required for lipoylation of the acyltransferase, and that the two proteins associate together to carry out this post-translational modification. From the published DNA sequences, we suggest the presence of functional transcriptional and translational regulatory elements, and furthermore we present preliminary evidence that lipoylation occurs in vivo in Tp. acidophilum. This is the first report of the lipoylation machinery in the Archaea, which is unique in that the catalytic activity is dependent on two separate gene products. Structured digital abstract ,,MINT-7103712: E2lipD (uniprotkb:Q9HIA5), CTD (uniprotkb:Q9HKT2) and LplA (uniprotkb:Q9HKT1) physically interact (MI:0915) by molecular sieving (MI:0071) [source]


    Novel type III polyketide synthases from Aloe arborescens

    FEBS JOURNAL, Issue 8 2009
    Yuusuke Mizuuchi
    Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85,96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 °C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. [source]


    Identification of RNase HII from psychrotrophic bacterium, Shewanella sp.

    FEBS JOURNAL, Issue 10 2006
    SIB1 as a high-activity type RNase H
    The gene encoding RNase HII from the psychrotrophic bacterium, Shewanella sp. SIB1 was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RNase HII is a monomeric protein with 212 amino acid residues and shows an amino acid sequence identity of 64% to E. coli RNase HII. The enzymatic properties of SIB1 RNase HII, such as metal ion preference, pH optimum, and cleavage mode of substrate, were similar to those of E. coli RNase HII. SIB1 RNase HII was less stable than E. coli RNase HII, but the difference was marginal. The half-lives of SIB1 and E. coli RNases HII at 30 °C were ,,30 and 45 min, respectively. The midpoint of the urea denaturation curve and optimum temperature of SIB1 RNase HII were lower than those of E. coli RNase HII by ,,0.2 m and ,,5 °C, respectively. However, SIB1 RNase HII was much more active than E. coli RNase HII at all temperatures studied. The specific activity of SIB1 RNase HII at 30 °C was 20 times that of E. coli RNase HII. Because SIB1 RNase HII was also much more active than SIB1 RNase HI, RNases HI and HII represent low- and high-activity type RNases H, respectively, in SIB1. In contrast, RNases HI and HII represent high- and low-activity type RNases H, respectively, in E. coli. We propose that bacterial cells usually contain low- and high-activity type RNases H, but these types are not correlated with RNase H families. [source]