Seismic Velocities (seismic + velocity)

Distribution by Scientific Domains


Selected Abstracts


Seismic evidence for a sharp lithospheric base persisting to the lowermost mantle beneath the Caribbean

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2008
Tadashi Kito
SUMMARY Broad-band data from South American earthquakes recorded by Californian seismic networks are analysed using a newly developed seismic wave migration method,the slowness backazimuth weighted migration (SBWM). Using the SBWM, out-of-plane seismic P -wave reflections have been observed. The reflection locations extend throughout the Earth's lower mantle, down to the core,mantle boundary (CMB) and coincide with the edges of tomographically mapped high seismic velocities. Modelling using synthetic seismograms suggests that a narrow (10,15 km) low- or high-velocity lamella with about 2 per cent velocity contrast can reproduce the observed reflected waveforms, but other explanations may exist. Considering the reflection locations and synthetic modelling, the observed out-of-plane energy is well explained by underside reflections off a sharp reflector at the base of the subducted lithosphere. We also detect weaker reflections corresponding to the tomographically mapped top of the slab, which may arise from the boundary between the Nazca plate and the overlying former basaltic oceanic crust. The joint interpretation of the waveform modelling and geodynamic considerations indicate mass flux of the former oceanic lithosphere and basaltic crust across the 660 km discontinuity, linking processes and structure at the top and bottom of the Earth's mantle, supporting the idea of whole mantle convection. [source]


Seismic singularities at upper-mantle phase transitions: a site percolation model

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004
Felix J. Herrmann
SUMMARY Mineralogical phase transitions are usually invoked to account for the sharpness of globally observed upper-mantle seismic discontinuities. We propose a percolation-based model for the elastic properties of the phase mixture in the coexistence regions associated with these transitions. The major consequence of the model is that the elastic moduli (but not the density) display a singularity at the percolation threshold of the high-pressure phase. This model not only explains the sharp but continuous change in seismic velocities across the phase transition, but also predicts its abruptness and scale invariance, which are characterized by a non-integral scale exponent. Using the receiver-function approach and new, powerful signal-processing techniques, we quantitatively determine the singularity exponent from recordings of converted seismic waves at two Australian stations (CAN and WRAB). Using the estimated values, we construct velocity,depth profiles across the singularities and verify that the calculated converted waveforms match the observations under CAN. Finally, we point out a series of additional predictions that may provide new insights into the physics and fine structure of the upper-mantle transition zone. [source]


Processing, modelling and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002
Erika Angerer
Summary Time-lapse seismology is important for monitoring subsurface pressure changes and fluid movements in producing hydrocarbon reservoirs. We analyse two 4-D, 3C onshore surveys from Vacuum Field, New Mexico, USA, where the reservoir of interest is a fractured dolomite. In Phase VI, a time-lapse survey was acquired before and after a pilot tertiary-recovery programme of overpressured CO2 injection, which altered the fluid composition and the pore-fluid pressure. Phase VII was a similar time-lapse survey in the same location but with a different lower-pressure injection regime. Applying a processing sequence to the Phase VI data preserving normal-incidence shear-wave anisotropy (time-delays and polarization) and maximizing repeatability, interval-time analysis of the reservoir interval shows a significant 10 per cent change in shear-wave velocity anisotropy and 3 per cent decrease in the P -wave interval velocities. A 1-D model incorporating both saturation and pressure changes is matched to the data. The saturation changes have little effect on the seismic velocities. There are two main causes of the time-lapse changes. Any change in pore-fluid pressures modifies crack aspect ratios. Additionally, when there are overpressures, as there are in Phase VI, there is a 90° change in maximum impedance directions, and the leading faster split shear wave, instead of being parallel to the crack face as it is for low pore-fluid pressures, becomes orthogonal to the crack face. The anisotropic poro-elasticity (APE) model of the evolution of microcracked rock, calculates the evolution of cracked rock to changing conditions. APE modelling shows that at high overburden pressures only nearly vertical cracks, to which normal incidence P waves are less sensitive than S waves, remain open as the pore-fluid pressure increases. APE modelling matches the observed time-lapse effects almost exactly demonstrating that shear-wave anisotropy is a highly sensitive diagnostic of pore-fluid pressure changes in fractured reservoirs. In this comparatively limited analysis, APE modelling of fluid-injection at known pressure correctly predicted the changes in seismic response, particularly the shear-wave splitting, induced by the high-pressure CO2 injection. In the Phase VII survey, APE modelling also successfully predicted the response to the lower-pressure injection using the same Phase VI model of the cracked reservoir. The underlying reason for this remarkable predictability of fluid-saturated reservoir rocks is the critical nature and high crack density of the fluid-saturated cracks and microcracks in the reservoir rock, which makes cracked reservoirs critical systems. [source]


Non-uniqueness with refraction inversion , the Mt Bulga shear zone

GEOPHYSICAL PROSPECTING, Issue 4 2010
Derecke Palmer
ABSTRACT The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non-uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non-uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable. [source]


Determining the dilation factor in 4D monitoring of compacting reservoirs by rock-physics models

GEOPHYSICAL PROSPECTING, Issue 6 2007
José M. Carcione
ABSTRACT Hydrocarbon depletion and fluid injection cause compaction and stretching of the reservoir and overburden layers. 4D prestack seismic data can be used to detect these changes because compaction/stretching causes changes in traveltimes and seismic velocities. We show that, by using two different petro-elastic models at varying effective pressures, a good approximation is to assume that the fractional changes in layer thickness, ,L/L, and seismic velocity, ,v/v, are related by a linear function of ,L/L. The slope of this function (the dilation factor, ,= (,v/v)/(,L/L)) is negative and its absolute value generally decreases (shale, low porosity) or increases (sandstone, high porosity) with increasing layer thickness and decreasing effective pressure. The analysis is mainly performed for isotropic deformations. The dilation factor for uniaxial deformations is smaller in absolute value. The dilation factor, which can be calculated from time-lapse data, can be used to predict reservoir compaction/stretching as a function of depth and surface subsidence. [source]


An approach to combined rock physics and seismic modelling of fluid substitution effects

GEOPHYSICAL PROSPECTING, Issue 2 2002
Tor Arne Johansen
ABSTRACT The aim of seismic reservoir monitoring is to map the spatial and temporal distributions and contact interfaces of various hydrocarbon fluids and water within a reservoir rock. During the production of hydrocarbons, the fluids produced are generally displaced by an injection fluid. We discuss possible seismic effects which may occur when the pore volume contains two or more fluids. In particular, we investigate the effect of immiscible pore fluids, i.e. when the pore fluids occupy different parts of the pore volume. The modelling of seismic velocities is performed using a differential effective-medium theory in which the various pore fluids are allowed to occupy the pore space in different ways. The P-wave velocity is seen to depend strongly on the bulk modulus of the pore fluids in the most compliant (low aspect ratio) pores. Various scenarios of the microscopic fluid distribution across a gas,oil contact (GOC) zone have been designed, and the corresponding seismic properties modelled. Such GOC transition zones generally give diffuse reflection regions instead of the typical distinct GOC interface. Hence, such transition zones generally should be modelled by finite-difference or finite-element techniques. We have combined rock physics modelling and seismic modelling to simulate the seismic responses of some gas,oil zones, applying various fluid-distribution models. The seismic responses may vary both in the reflection time, amplitude and phase characteristics. Our results indicate that when performing a reservoir monitoring experiment, erroneous conclusions about a GOC movement may be drawn if the microscopic fluid-distribution effects are neglected. [source]


An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project,An overview

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Christian KOEBERL
It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1,2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics & Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600,3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters. [source]


Inverse problem in seismic imaging

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2007
Maria Cameron
We address the problem of estimating sound speeds (seismic velocities) inside the earth which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the seismic velocities and the time migration velocities using the paraxial ray tracing theory. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems and we test them on a collection of both synthetic examples and field data. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Geological constraints of pore pressure detection in shales from seismic data

BASIN RESEARCH, Issue 1 2007
Gunn M. G. Teige
ABSTRACT Methods for detection of pore fluid overpressures in shales from seismic data have become widespread in the oil industry. Such methods are largely based on the identification of anomalous seismic velocities, and on subsequent determination of pore pressures through relationships between seismic velocities and the vertical effective stress (VES). Although it is well known that lithology variations and compaction mechanisms should be accounted for in pore pressure evaluation, a systematic approach to evaluation of these factors in seismic pore pressure prediction seems to be absent. We have investigated the influence of lithology variations and compaction mechanism on shale velocities from acoustic logs. This was performed by analyses of 80 wells from the northern North Sea and 24 wells from the Haltenbanken area. The analyses involved identification of large-scale density and velocity variations that were unrelated to overpressure variations, which served as a basis for the analyses of the resolution of overpressure variations from well log data. The analyses demonstrated that the overpressures in neither area were associated with compaction disequilibrium. A significant correlation between acoustic velocity and fluid overpressure nevertheless exists in the Haltenbanken data, whereas the correlation between these two parameters is weak to non-existing in the North Sea shales. We do not presently know why acoustic velocities in the two areas respond differently to fluid overpressuring. Smectitic rocks often have low permeabilities, and define the top of overpressures in the northern North Sea when they are buried below 2 km. As smectitic rocks are characterized by low densities and low acoustic velocities, their presence may be identified from seismic data. Smectite identification from seismic data may thus serve as an indirect overpressure indicator in some areas. Our investigations demonstrate the importance of including geological work and process understanding in pore pressure evaluation work. As a response to the lack of documented practice within this area, we suggest a workflow for geological analyses that should be performed and integrated with seismic pore pressure prediction. [source]


A complex, young subduction zone imaged by three-dimensional seismic velocity, Fiordland, New Zealand

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2001
Donna Eberhart-Phillips
Summary The Fiordland subduction zone, where subduction developed in the late Miocene, has been imaged with P and S,P arrival-time data from 311 earthquakes in a simultaneous inversion for hypocentres and 3-D VP and VP/VS models. The three-month microearthquake survey, recorded with 24 portable seismographs, provides excellent coverage, and, since earthquakes to depths of 130 km are included, parts of the model are well-resolved to depths of 100 km. The crustal features are generally consistent with geology. The low velocity in the upper 10 km is associated with the Te Anau and Waiau basins. The Western Fiordland Orthogneiss is associated with a prominent feature from near-surface to over 40 km depth, which includes the residue from the basaltic source rocks. It is defined by high VP (7.4 km s,1 at 15 km depth) and slightly low VP/VS, and has distinct boundaries on its southern and eastern margins. Adjacent to the deepest earthquakes, there is high-velocity Pacific mantle below 80 km depth, inferred to be the mantle expression of ongoing shortening since the early Miocene. As the subducting slab moves down and northeast, it is hindered by the high-velocity body and bends to near-vertical. Bending is accommodated by distributed fracturing evidenced by high VP/VS and persistent deep earthquake activity. Buckling of the subducted plate pushes up the Western Fiordland Orthogneiss. In the transition to the Alpine fault in northern Fiordland, a prominent low-velocity crustal root is consistent with ductile thickening in combination with downwarp of the subducted plate. [source]


Non-uniqueness with refraction inversion , the Mt Bulga shear zone

GEOPHYSICAL PROSPECTING, Issue 4 2010
Derecke Palmer
ABSTRACT The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non-uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non-uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable. [source]


Determining the dilation factor in 4D monitoring of compacting reservoirs by rock-physics models

GEOPHYSICAL PROSPECTING, Issue 6 2007
José M. Carcione
ABSTRACT Hydrocarbon depletion and fluid injection cause compaction and stretching of the reservoir and overburden layers. 4D prestack seismic data can be used to detect these changes because compaction/stretching causes changes in traveltimes and seismic velocities. We show that, by using two different petro-elastic models at varying effective pressures, a good approximation is to assume that the fractional changes in layer thickness, ,L/L, and seismic velocity, ,v/v, are related by a linear function of ,L/L. The slope of this function (the dilation factor, ,= (,v/v)/(,L/L)) is negative and its absolute value generally decreases (shale, low porosity) or increases (sandstone, high porosity) with increasing layer thickness and decreasing effective pressure. The analysis is mainly performed for isotropic deformations. The dilation factor for uniaxial deformations is smaller in absolute value. The dilation factor, which can be calculated from time-lapse data, can be used to predict reservoir compaction/stretching as a function of depth and surface subsidence. [source]


A laboratory study of seismic velocity and attenuation anisotropy in near-surface sedimentary rocks

GEOPHYSICAL PROSPECTING, Issue 5 2007
Angus I. Best
ABSTRACT The laboratory ultrasonic pulse-echo method was used to collect accurate P- and S-wave velocity (±0.3%) and attenuation (±10%) data at differential pressures of 5,50 MPa on water-saturated core samples of sandstone, limestone and siltstone that were cut parallel and perpendicular to the vertical borehole axis. The results, when expressed in terms of the P- and S-wave velocity and attenuation anisotropy parameters for weakly transversely isotropic media (,, ,, ,Q, ,Q) show complex variations with pressure and lithology. In general, attenuation anisotropy is stronger and more sensitive to pressure changes than velocity anisotropy, regardless of lithology. Anisotropy is greatest (over 20% for velocity, over 70% for attenuation) in rocks with visible clay/organic matter laminations in hand specimens. Pressure sensitivities are attributed to the opening of microcracks with decreasing pressure. Changes in magnitude of velocity and attenuation anisotropy with effective pressure show similar trends, although they can show different signs (positive or negative values of ,, ,Q, ,, ,Q). We conclude that attenuation anisotropy in particular could prove useful to seismic monitoring of reservoir pressure changes if frequency-dependent effects can be quantified and modelled. [source]


Effects of pore aspect ratios on velocity prediction from well-log data

GEOPHYSICAL PROSPECTING, Issue 3 2002
Jun Yan
ABSTRACT We develop a semi-empirical model which combines the theoretical model of Xu and White and the empirical formula of Han, Nur and Morgan in sand,clay environments. This new model may be used for petrophysical interpretation of P- and S-wave velocities. In particular, we are able to obtain an independent estimation of aspect ratios based on log data and seismic velocity, and also the relationship between velocities and other reservoir parameters (e.g. porosity and clay content), thus providing a prediction of shear-wave velocity. To achieve this, we first use Kuster and Toksöz's theory to derive bulk and shear moduli in a sand,clay mixture. Secondly, Xu and White's model is combined with an artificial neural network to invert the depth-dependent variation of pore aspect ratios. Finally these aspect ratio results are linked to the empirical formula of Han, Nur and Morgan, using a multiple regression algorithm for petrophysical interpretation. Tests on field data from a North Sea reservoir show that this semi-empirical model provides simple but satisfactory results for the prediction of shear-wave velocities and the estimation of reservoir parameters. [source]


Crustal Composition of China Continent Constrained from Heat Flow Data and Helium Isotope Ratio of Underground Fluid

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Yang WANG
Abstract: Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 ,W/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58,1.12 ,W/m3 with a median of 0.85 ,W/m3. Accordingly, the contents of U, Th and K2O in China crust are in ranges of 0.83,1.76 ,g/g, 3.16,6.69 ,g/g, and 1.0%,2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust. [source]