Seismic Sequence (seismic + sequence)

Distribution by Scientific Domains


Selected Abstracts


Archaeological evidence for destructive earthquakes in Sicily between 400 B.C. and A.D. 600

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 2 2009
Carla Bottari
A systematic archaeoseismological study indicates that at least three earthquakes occurred between 400 B.C. and A.D. 600, causing destruction to numerous ancient monuments in Sicily. Evidence for these earthquakes comes from the collapse style of buildings (toppled walls, column drums in a domino-style arrangement, directional collapses, etc.), and the exclusion of other likely causes for such effects. Dating of inferred earthquakes is based on coins (accurate to within 5,10 years), pottery (accurate to within 50,200 years), and other artifacts. The oldest documented earthquake occurred between 370 and 300 B.C. and caused the collapse of two Greek temples in Selinunte. This otherwise poorly documented event was probably also the cause of extensive destruction in northeastern Sicily in the first century A.D. Destruction of some sites may be assigned to an earthquake that occurred between 360 and 374 and correlates with the A.D. 365 seismic sequence known from historical sources. This study covers a wider region and provides a more precise dating of earthquakes than previous studies. Although it focuses on a certain period (4th,3rd centuries B.C., 4th,7th centuries A.D.), it indicates that the period before A.D. 1000 is not a period of seismic quiescence in Sicily as was previously believed, but to a period characterized by strong and destructive earthquakes. © 2009 Wiley Periodicals, Inc. [source]


Present-day stress in the surroundings of 2009 L'Aquila seismic sequence (Italy)

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2010
Maria Teresa Mariucci
SUMMARY The axial zone of the Apenninic belt in central Italy is a tectonically active region affected by post-orogenic Quaternary extension. The present-day stress field is characterized by a minimum horizontal stress (Shmin) , NE,SW oriented, derived mainly from earthquake focal mechanisms and secondarily from borehole breakouts and fault data. The paper describes the computation of the Shmin orientation along two deep boreholes located in the vicinity of the area hit by the 2009 April 6, Mw 6.3 L'Aquila earthquake. The analysed wells show breakout zones at a depth range between 1.4 and 4.6 km, giving precious information on a depth interval usually not investigated by any other data. The results show an Shmin N81 ± 22° and N74 ± 10° oriented for Varoni 1 and Campotosto 1 wells, respectively. The comparison among the breakouts, the 2009 seismic sequence, the past seismicity and the Quaternary faults indicates a small rotation of Shmin orientation from , NE, in the southern, to , ENE in the northern sector of the study area, where the wells are located. These differences are linked both to the natural variations of data and to the orientation of the main tectonic structures varying from NW,SE in the Abruzzi region to , N,S moving toward the Umbro-Marchean Apennines. The identification of constant Shmin orientations with depth derived from all the examined active stress data, confirms the breakouts as reliable stress indicators also for aseismic areas. [source]


DISTRIBUTION OF SOURCE ROCKS AND MATURITY MODELLING IN THE NORTHERN CENOZOIC SONG HONG BASIN (GULF OF TONKIN), VIETNAM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2005
C. Andersen
The northern offshore part of the Cenozoic Song Hong Basin in the Gulf of Tonkin (East Vietnam Sea) is at an early stage of exploration with only a few wells drilled. Oil to source rock correlation indicates that coals are responsible for the sub-commercial oil and gas accumulations in sandstones in two of the four wells which have been drilled on faulted anticlines and flower structures. The wells are located in a narrow, structurally inverted zone with a thick predominantly deltaic Miocene succession between the Song Chay and Vinh Ninh/Song Lo fault zones. These faults are splays belonging to the offshore extension of the Red River Fault Zone. Access to a database of 3,500 km of 2D seismic data has allowed a detailed and consistent break-down of the geological record of the northern part of the basin into chronostratigraphic events which were used as inputs to model the hydrocarbon generation history. In addition, seismic facies mapping, using the internal reflection characteristics of selected seismic sequences, has been applied to predict the lateral distribution of source rock intervals. The results based on Yükler ID basin modelling are presented as profiles and maturity maps. The robustness of the results are analysed by testing different heat flow scenarios and by transfer of the model concept to IES Petromod software to obtain a more acceptable temperature history reconstruction using the Easy%R0 algorithm. Miocene coals in the wells located in the inverted zone between the fault splays are present in separate intervals. Seismic facies analysis suggests that the upper interval is of limited areal extent. The lower interval, of more widespread occurrence, is presently in the oil and condensate generating zones in deep synclines between inversion ridges. The Yükler modelling indicates, however, that the coaly source rock interval entered the main window prior to formation of traps as a result of Late Miocene inversion. Lacustrine mudstones, similar to the highly oil-prone Oligocene mudstones and coals which are exposed in the Dong Ho area at the northern margin of the Song Hong Basin and on Bach Long Vi Island in Gulf of Tonkin, are interpreted to be preserved in a system of undrilled NW,SE Paleogene half-grabens NE of the Song Lo Fault Zone. This is based on the presence of intervals with distinct, continuous, high reflection seismic amplitudes. Considerable overlap exists between the shale-prone seismic facies and the modelled extent of the present-day oil and condensate generating zones, suggesting that active source kitchens also exist in this part of the basin. Recently reported oil in a well located onshore (BIO-STB-IX) at the margin of the basin, which is sourced mainly from "Dong Ho type" lacustrine mudstones supports the presence of an additional Paleogene sourced petroleum system. [source]