Home About us Contact | |||
Sedimentation Value (sedimentation + value)
Selected AbstractsGLUTEN QUALITY PREDICTION AND CORRELATION STUDIES IN SPRING WHEATSJOURNAL OF FOOD QUALITY, Issue 4 2007IMRAN PASHA ABSTRACT Gluten, "cohesive, viscoelastic, proteinaceous material prepared as a by-product of the starch isolation from wheat flour" and the storage and dough-forming protein of wheat flour, is the key to the unique ability of wheat to suit the production of leavened products. Wet gluten was only affected by wheat varieties, while dry gluten was affected by wheat varieties, crop years and their interaction. The wet and dry gluten ranged 8.0,43.13% and 2.58,14.55%, respectively, and were positively correlated with Zeleny value, sodium dodecyl sulfate sedimentation value and falling number. The gluten content was higher in Pavon, SA 42 and Faisalabad 85, while Zeleny value was higher in GA 02 and C 518, resulting in better gluten quality. Zeleny value was negatively correlated with crude protein content (r = ,0.1857*). The lowest amount of wet and dry gluten was detected in Triticale and durum wheats as compared to common wheats. Zeleny value and sedimentation value may be used as indicators of gluten content and quality while working on wheats. The information thus collected will be valuable for cereal chemists and wheat breeders for improvements in their future breeding programs. PRACTICAL APPLICATIONS This research work will be a breakthrough and helpful for wheat breeders, growers, millers and bakers for their intended uses as every consumer demand specific wheat quality characteristics for their end products. [source] Impact of different nitrogen fertilizers and an additional sulfur supply on grain yield, quality, and the potential of acrylamide formation in winter wheatJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2008Ernst Albrecht Weber Abstract The amino acid asparagine (Asn) plays a key role in acrylamide (AA) formation in strongly heated cereal foodstuffs. The influence of different nitrogen (N) fertilizers (calcium ammonium nitrate, CAN; urea ammonium sulfate solution, UAS, applied according to the CULTAN method; urea; urea ammonium nitrate, UAN; ammonium nitrate sulfate containing the nitrification inhibitor 3,4-dimethyl pyrazole phosphate, Entec 26®; and a combination of liquid manure and CAN) at a nitrogen level of 180,kg N ha,1 and an additional sulfur (S) supply on grain yield, quality, Asn concentration, and the potential of AA formation of winter wheat were studied in a 2-year field experiment. Grain yields varied between 61 und 104 dt ha,1 dry matter depending on cultivar (cv), fertilization, and year. Quality demands concerning crude protein concentration and sedimentation value were reached when CAN, CAN+S, urea, or a combination of liquid manure and CAN were applied. Asparagine concentrations in flours varied from 2.6 to 13.6 mg per 100 g flour dry matter depending on cultivar, fertilization, and year. In both years, a close nonlinear correlation between crude protein concentration and the concentration of free Asn with r²2004 = 0.93 and r²2005 = 0.94 was observed. Nitrogen fertilizers leading to high crude protein concentrations caused significantly increased Asn concentrations. In both years, a correlation between the concentration of free Asn and the potential of AA formation with r²2004 = 0.72 and r²2005 = 0.84 was found. The application of S (CAN compared to CAN+S) had no beneficial effect on the Asn concentration and the potential of AA formation, most likely because S concentration in grains was sufficient even without additional S supply. [source] Comparison of the quality of some Croatian and German wheat varieties according to the German standard protocolMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 2 2003Ljiljana Unbehend Abstract Ten Croatian and five German wheat varieties were tested. They were carried out using the German standard testing protocol. The results demonstrated that the quality of the Croatian wheat varieties could be ranged in A,C quality groups according to the German testing protocol. Croatian wheat varieties were comparable in many parameters (protein content, hardness, water absorption, dough handling properties and volume yield) with chosen German wheat varieties. Some differences were found in falling number, sedimentation value, flour yield, and ash value number. [source] Genotypic and temperature effects on wheat grain yield and quality in a hot irrigated environmentPLANT BREEDING, Issue 4 2006I. S. A. Tahir Abstract High temperature influences both grain yield and end-use quality of wheat. The objectives of this study were to evaluate the performance of selected wheat genotypes under heat stress and to examine the effects of high temperatures during grain filling on grain yield and end-use quality parameters. Fifteen bread wheat genotypes in 2000/2001 and 18 genotypes in 2002/2003 were evaluated under the optimum and late-sowing conditions of the irrigated hot environment of the Gezira Research Farm, Wad Medani, Sudan. The genotypes comprised released varieties and elite lines from the Sudanese wheat improvement programme. Data collected included grain yield, grain weight and grain end-use quality including protein content, protein composition, SDS sedimentation values (SDSS) and gluten strength as determined by mixograph analyses. High temperatures significantly decreased grain yield by decreasing grain weight. Although genotypes exhibited variation in magnitude of response, results indicated that high temperature during grain filling increased both soluble and insoluble protein contents, SDSS, mixograph peak height (MPH) and the descending slope at 2 min past peak (MDS). In contrast, mixograph peak time (MPT) and the curve width at 2 min past peak (MCW) were significantly decreased. Flour protein correlated positively with SDSS, MPH and MDS and negatively with MCW. MPT correlated negatively with MDS and positively with MCW. Results indicate that high temperature increased both soluble and insoluble protein contents, SDSS and MPH, and hence the gluten strength, but decreased flour mixing time and tolerance and hence the dough elasticity. Variation observed among genotypes suggests that grain end-use quality could be improved under high temperature conditions utilizing the available variability; however, it might require evaluation under various growing conditions. [source] |