Home About us Contact | |||
Sedimentary Systems (sedimentary + system)
Selected AbstractsControl of Fades and Potential on Jurassic Hydrocarbon Accumulation and Prediction of Favorable Targets in the Hinterland Region of the Junggar BasinACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010CHEN Dongxia Abstract: Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure fades belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currently discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies-potential index FPI>0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon-bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone. [source] Quantitative tests for stratigraphic cyclicityGEOLOGICAL JOURNAL, Issue 4 2008R. J. Bailey Abstract Periodic Milankovitch (M-) orbital forcing provides an explanation for subjectively recognized short-term repetition of lithofacies-,cycles'-in the stratigraphic record. Tests of this explanation often find no order in the lithofacies and/or no regularity in the recurrence of lithofacies. This does not disprove the influence of M-forcing, but a sedimentary response in terms of irregular M-forced ,cycles' is indistinguishable from one in which repetition of facies is not M-forced. Use of such cycles in time calibration is correspondingly suspect. Stricter, dimensional cyclicity invokes Sander's Rule, which suggests periodicity in sedimentation, for which M-forcing provides an obvious explanation. Time calibration on the basis of strict cyclicity thus appears more dependable. Objective tests for regular M-forced stratigraphic cyclicity commonly depend upon spectral analyses. Such tests are not unambiguous. Bilogarithmic thickness/frequency plots derived from objective layer thickness inventories (LTI) provide an alternative. Commonly, such plots show power-law relationships that preclude dimensional M-cyclicities. By contrast, a model data series that perfectly encodes the M-cyclic fluctuations in terrestrial insolation generates a strongly inflected, non-power-law LTI plot. Power-law plots result where the model data series is decimated by random hiatuses, with numbers and durations tuned to M-cycle frequencies. It seems improbable that natural data series record such tuning. The general absence of strict cyclicity in the M-frequency range is more likely to reflect the nonlinear response of sedimentary systems to cyclic M-forcing of insolation. Interestingly, when applied to the classically cyclic lacustrine Triassic sediments of the Newark Basin, USA, the LTI test suggests a decimated record, preserving some evidence of M-cyclicity. Copyright © 2008 John Wiley & Sons, Ltd. [source] Feature: The sedimentary signature of deserts and their response to environmental changeGEOLOGY TODAY, Issue 3 2004Nigel P. Mountney Desert sedimentary systems comprise a variety of related sub-environments including aeolian dunes, intervening interdunes, sandsheets, salt flats, playa lakes, ephemeral fluvial systems and alluvial fans. These are highly sensitive, and undergo subtle but systematic morphological and sedimentary adjustments in response to externally-imposed environmental change. This article presents a dynamic model explaining how desert successions , particularly aeolian dune and interdune environments , are determined both by intrinsic sedimentary behaviour, such as dune migration, and by the imposition of externally-forced changes such as climate change. [source] Trajectory analysis: concepts and applicationsBASIN RESEARCH, Issue 5 2009W. Helland-Hansen ABSTRACT Shoreline and shelf-edge trajectories describe the migration through time of sedimentary systems, using geomorphological breaks-in-slope that are associated with key changes in depositional processes and products. Analysis of these trajectories provides a simple descriptive tool that complements and extends conventional sequence stratigraphic methods and models. Trajectory analysis offers four advantages over a sequence stratigraphic interpretation based on systems tracts: (1) each genetically related advance or retreat of a shoreline or shelf edge is viewed in the context of a continuously evolving depositional system, rather than as several discrete systems tracts; (2) subtle changes in depositional response (e.g. within systems tracts) can be identified and honoured; (3) trajectory analysis does not anticipate the succession of depositional events implied by systems-tract models; and (4) the descriptive emphasis of trajectory analysis does not involve any a priori assumptions about the type or nature of the mechanisms that drive sequence development. These four points allow the level of detail in a trajectory-based interpretation to be directly tailored to the available data, such that the interpretation may be qualitative or quantitative in two or three dimensions. Four classes of shoreline trajectory are recognized: ascending regressive, descending regressive, transgressive and stationary (i.e. nonmigratory). Ascending regressive and high-angle (accretionary) transgressive trajectories are associated with expanded facies belt thicknesses, the absence of laterally extensive erosional surfaces, and relatively high preservation of the shoreline depositional system. In contrast, descending regressive and low-angle (nonaccretionary) transgressive trajectories are associated with foreshortened and/or missing facies belts, the presence of laterally extensive erosional surfaces, and relatively low preservation of the shoreline depositional system. Stationary trajectories record shorelines positioned at a steeply sloping shelf edge, with accompanying bypass of sediment to the basin floor. Shelf-edge trajectories represent larger spatial and temporal scales than shoreline trajectories, and they can be subdivided into ascending, descending and stationary (i.e. nonmigratory) classes. Ascending trajectories are associated with a relatively large number and thickness of shoreline tongues (parasequences), the absence of laterally extensive erosional surfaces on the shelf, and relatively low sediment supply to the basin floor. Descending trajectories are associated with a few, thin shoreline tongues, the presence of laterally extensive erosional surfaces on the shelf, and high sediment supply to basin-floor fan systems. Stationary trajectories record near-total bypass of sediment across the shelf and mass transfer to the basin floor. [source] Morphology and sedimentary systems in the Central Bransfield Basin, Antarctic Peninsula: sedimentary dynamics from shelf to basinBASIN RESEARCH, Issue 3 2009Marga García ABSTRACT A detailed regional characterization of the physiography, morphology and sedimentary systems of the Central Bransfield Basin (CBB) was carried out using swath bathymetry and high- and very high-resolution seismic profiles. The basin margins show continental shelves with numerous glacial troughs, and continental slopes where relatively wide and flat slope platforms represent the middle domain in an atypical physiographic scenario in glaciated margins. Although the CBB is tectonically active, most of the morphologic features are sedimentary in origin, and can be classified into four sedimentary systems: (1) glacial-glaciomarine, composed of erosional surfaces, glacial troughs, furrows and draping sheets; (2) slope-basin, formed by trough mouth fans, slope aprons, the Gebra-Magia instability complex and turbidity systems; (3) seabed fluid outflow system composed of pockmark fields; and (4) contourite, composed of drifts and moats. The sedimentary systems show a clear zonation from shelf to basin and their dynamics reflects the complex interplay among glacial, glaciomarine, marine and oceanographic processes involved in the entire shelf-to-basin sediment distribution. The CBB morphology is primarily controlled by glacial/interglacial cyclicity and physiography and to a lesser extent by tectonics and oceanography. These factors have affected the South Shetland Islands (SSI) and Antarctic Peninsula (AP) margins differently, creating a relatively starved SSI margin and a more constructional AP margin. They have also created two entire sediment-dispersal domains: the shelf-to-slope, which records the glaciation history of the CBB; and the lower slope-to-basin, which records the imprint of local factors. This study provides a ,source-to-sink' sedimentary scheme for glaciated margins, which may be applied to the basin research in other margins, based on the characterization of sedimentary systems, their boundaries and the linkages among them. This approach proves to be adequate for the identification of global and local factors governing the CBB and may therefore be applied to other study areas. [source] Quantitative analogue flume-model study of river,shelf systems: principles and verification exemplified by the Late Quaternary Colorado river,delta evolutionBASIN RESEARCH, Issue 3 2001M. W. I. M. Van Heijst ABSTRACT Physical modelling of clastic sedimentary systems over geological time spans has to resort to analogue modelling since full scaling cannot be achieved within the spatial and temporal restrictions that are imposed by a laboratory set-up. Such analogue models are suitable for systematic investigation of a sedimentary system's sensitivity to allocyclic changes by isolating governing parameters. Until now, analogue models of landscape evolution were mainly qualitative in nature. In this paper, we present a quantitative approach. The quantitative experimental results are verified and discussed by comparison with high-resolution data from the Colorado river,shelf system of the Texas shelf that we used as a prototype. The model's dimensions are proportionally scaled to the prototype, except for a vertical exaggeration. Time is scaled using a Basin Response factor to maintain a similar ratio between the period of change and the system's equilibrium time for model and prototype. A Basin Fill factor was used to compare the ratio between the time-averaged sedimentation rate and the rate of change in accommodation space of model and prototype. The flume-model results are in the form of sediment budgets that are related to shelf cannibalism and fluvial supply, which are compared with the ancestral Colorado river,delta evolution of the last 40 kyr. Model and prototype have similarities in delta evolution in response to one cycle of sea-level change. With sea-level change as the isolated variable, the flume model generates a significant supply pulse caused by headward erosion of the shelf in response to the sea-level fall. This pulse adds to the yield of the hinterland. The supply induced by sea-level change persists during the early rise, although its rate declines. A similar trend is observed on the east Texas shelf. We argue that shelfal and fluvial degradation cycles induced by sea-level changes can significantly influence the timing and amount of sediment supply to basins and must therefore be taken into consideration. [source] Temporal Distribution of Diagnostic Biofabrics in the Lower and Middle Ordovician in North China: Clues to the Geobiology of the Great Ordovician Biodiversification EventACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2009Jianbo LIU Abstract: The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences of the Great Ordovician Biodiversification Event (GOBE). The pre-GOBE sedimentary systems deposited in Tremadoc display widespread microbialite and flat-pebble conglomerates, and a less extent of bioturbation. Through the transitional period of early Floian, the sedimentary systems in the rest of the Early and Mid- Ordovician change to GOBE type and are characterized by intensive bioturbation and vanishing flat-pebble conglomerates and subtidal microbial sediments. The irreversible changes in sedimentary systems in North China are linked to the GOBE, which conduced the increase in infaunal tiering, the expansion of infaunal ecospace, and the appearance of new burrowers related to the development of the Paleozoic Evolutionary Fauna during the Ordovician biodiversification. Thus, changes in sedimentary systems during the pivotal period of the GOBE were consequences of a steep diversification of benthic faunas rather than the GOBE's environmental background. [source] |