Home About us Contact | |||
Sedimentary Facies (sedimentary + facy)
Selected AbstractsControls on modern alluvial fan processes in the central Alps, northern ItalyEARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2004Giovanni B. Crosta Abstract Alluvial fan development in Alpine areas is often affected by catastrophic sedimentary processes associated with extreme ,oods events, causing serious risks for people living on the fans. Hazard assessment in these areas depends on proper identi,cation of the dominant sedimentary processes on the fans. Data from a set of 209 alluvial fans from the central Alps of Italy are presented in this paper and analysed with the help of various statistical techniques (linear regression, principal components analysis, cluster analysis, discriminant analysis and logistic regression). First, we used modern sedimentary facies and historical records (,ood events since 15th century), to distinguish between the two dominant sedimentary processes on alluvial fans: debris ,ows and stream,ows. Then, in order to analyse the main controls on past and present fan processes, 36 morphological, geological and land-use variables were analysed. As with observations for arid-environment fans, catchment morphology is the most in,uential factor in the study area, whereas geology and land use are minor controls. The role of climatic change and landsliding within the catchments also seems to be very important and is discussed. Statistical techniques also help in differentiating groups of alluvial fans by sets of controlling factors, including stage and type of evolution. Finally, by using discriminant analysis and logistic regression, we classi,ed alluvial fans according to the dominant sedimentary process, with a success rate ranging between 75 and 92 per cent. Copyright © 2004 John Wiley & Sons, Ltd. [source] Mesozoic,Paleogene sedimentary facies and paleogeography of Tibet, western China: tectonic implicationsGEOLOGICAL JOURNAL, Issue 3 2002Kai-Jun Zhang Abstract In Early,Middle Triassic time, an abyssal sea covered most of the Songpan,Ganzi area, whereas a Central Tibetan Landmass, up to 400,km wide, may have stretched across the Lhasa and Western Qiangtang terrains. In Late Triassic time, the Songpan,Ganzi sea closed, the Central Tibetan Landmass receded westwards away from southern Western Qiangtang, a littoral environment dominated Eastern Qiangtang, middle Western Qiangtang, and southeastern Lhasa, a shelf environment existed only in northern and southeastern Western Qiangtang and northwestern Eastern Qiangtang, and abyssal flysch was spread along the eastern Bangonghu,Nüjiang zone. In Early,Middle Jurassic time, Songpan,Ganzi had become part of the Eurasian continent, abyssal flysch sediments stretched throughout the Bangonghu,Nüjiang zone, the Central Tibetan Landmass was only locally present in southwestern Lhasa, and the Tethyan epicontinental sea nearly covered all Tibet southwest of the Jinsajiang suture. In Late Jurassic time, oceanic flysch deposition existed only along the westernmost Bangonghu,Nüjiang zone, nearly all of Tibet was covered by coastal deposits, and shelf deposits existed only in northern Western Qiangtang and westernmost Lhasa. In the early stage of Early Cretaceous time, the majority of Qiangtang had become dry land, and a supralittoral environment dominated across the entire Lhasa terrain. However, during the late stage of the Early Cretaceous time, platform,shelf carbonates prevailed on southern Western Qiangtang and northern Lhasa. In Late Cretaceous time, the majority of Qiangtang had become emergent land, and a supratidal environment dominated Lhasa, the western rim of Western Qiangtang, and Tarim. In Paleogene time, the majority of Tibet became emergent land, and a supratidal environment existed only on the southern and western rims. The dominance of Upper Triassic,Jurassic shelf carbonates on the northwestern Eastern Qiangtang corner and the northern Western Qiangtang rim suggests a diachronous closing of the Jinsajiang paleo-Tethys ocean, first during latest Triassic time when the Eastern Qiangtang terrain collided with Asia and finally in Jurassic time when the Western Qiangtang terrain was amalgamated to Asia. Rich picotites in Upper Triassic sandstones of middle Qiangtang suggest that the Shuanghu suture could have extended along the middle of Qiangtang, and stable shelf sedimentation during Late Triassic,Middle Jurassic time in the Western Qiangtang terrain shows that the suture probably could not have formed until Middle Jurassic time. The opening time of the Bangonghu,Nüjiang mid-Tethys ocean could be Late Triassic time due to the existence of the Central Tibetan Landmass across Western Qiangtang and Lhasa during Early,Middle Triassic time. However, its opening was diachronous, at Late Triassic time in the east and at Early,Middle Jurassic time in the west. Furthermore, its closing was also diachronous, first in the east at the beginning of Late Jurassic time and later in the west in latest Jurassic to earliest Cretaceous time. Widespread upper Lower Cretaceous limestone up to 5,km thick over the northern half of Lhasa indicates that southern Tibet could have undergone an extensive backarc subsidence during late Early Cretaceous time. Continuous shallow marine sedimentation through the entire Cretaceous time over much of southern Tibet indicates that southern Tibet was intensely elevated only after the end of Paleogene time, its high topography being the product of the Indo-Asian collision. Copyright © 2002 John Wiley & Sons, Ltd. [source] Organic facies and geochemical aspects in Neogene neritic sediments of the Takafu syncline area of central Japan: Paleoenvironmental and sedimentological reconstructionsISLAND ARC, Issue 4 2006Ken Sawada Abstract Organic petrological observations of kerogen macerals and organic geochemical analyses of carbon isotopes of kerogen macerals and biomarkers were conducted on Neogene neritic sediments of the Takafu syncline area of central Japan. The Senmi, Sakainomiya and Lower Shigarami Formations in that area were deposited at the neritic provinces on the southern edge of the paleo-Japan Sea during the Late Miocene to Early Pliocene. Sedimentary organic matter in these formations was almost terrigenous in origin. Changes in kerogen maceral compositions reflect sedimentological and tectonic histories evaluated in previous studies from sedimentary facies and paleontology. It was found that carbon isotope ratios (,13C) of kerogen macerals increased from ,28, to ,25, from the Sakainomiya to the lower part of the Lower Shigarami Formations. The cause of that increase was presumably the expansion of C4 plants into southwest Japan. The timing was concordant with that of the expansion of C4 plant grasslands in East Asia. The oxicity (oxic to anoxic) conditions of sea bottoms evaluated from pristane/phytane ratios varied. Particularly, in the lower part of the Senmi Formation, layers in which no steroid biomarkers could be detected were found, and had presumably formed under oxic conditions when strong biodegradation had occurred. Concentrations of regular (C27,C29) steranes and dinosteranes were higher in the Sakainomiya and Lower Shigarami Formations. This indicates that dinoflagellates-dominant primary productions were higher at those stages. In addition, concentrations of diatomaceous biomarkers such as C26 norsterane increased from the Lower Shigarami Formation, thus adding diatoms to the major producers. Furthermore, similar associations between the increases of ,13C values of kerogen macerals and concentrations of diatomaceous biomarkers were observed in the Takafu syncline area. Thus, the expansion of C4 plants was possibly associated with the high production of diatom in the shallow-marine areas of the paleo-Japan Sea during the Neogene Period. [source] Lithostratigraphy of Permian marine sequences, Khao Pun Area, central Thailand: Paleoenvironments and tectonic historyISLAND ARC, Issue 2 2000Vichai Chutakositkanon Abstract Geologic mapping and subsurface lithostratigraphic investigations were carried out in the Khao Pun area (4 km2), central Thailand. More than 250 hand specimens, 70 rock slabs, and 70 thin sections were studied in conjunction with geochemical data in order to elucidate paleoenvironments and tectonic setting of the Permian marine sedimentary sequences. This sedimentary succession (2485 m thick) was re-accessed and re-grouped into three lithostratigraphic units, namely, in ascending order, the Phu Phe, Khao Sung and Khao Pun Formations. The Lower to lower Upper Permian sedimentary facies indicated the transgressive/regressive succession of shelf sea/platform environment to pelagic or abyssal environment below the carbonate compensation depth. The sedimentological and paleontological aspects, together with petrochemical and lithological points of view, reveal that the oldest unit might indicate an Early Permian sheltered shallow or lagoonal environment. Then the depositional basin became deeper, as suggested by the prolonged occurrence of bedded chert-limestone intercalation with the local exposure of shallower carbonate build-up. Following this, the depositional environment changed to pelagic deposition, as indicated by laminated radiolarian (e.g. Follicucullus sp.) cherts. This cryptic evidence might indicate the abyssal environment during middle Middle to early Late Permian; whereas, previous studies advocated shelf-facies environments. Following this, the depositional condition might be a major regression on the microcontinent close to Indochina, from the minor transgressive/regressive cycles that developed within a skeletal barrier, and through the lagoon with limited circulational and anaerobic conditions, on to the tidal flat to the sheltered lagoon without effective land-derived sediments. [source] Identification of arid phases during the last 50,cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain),JOURNAL OF QUATERNARY SCIENCE, Issue 7 2010Juana Vegas Abstract Geochemical (element analysis, molecular analysis of organic compounds), physical, palynological, mineralogical and sedimentary facies analysis were performed to characterise the sedimentary record in Fuentillejo maar-lake in the Central Spanish Volcanic Field of Campo de Calatrava, in order to reconstruct the palaeoenvironmental and palaeoclimatic processes which controlled vegetation patterns and deposition of different sedimentary facies. The upper 20,m of core FUENT-1 show variations in clastic input, water chemistry, vegetation and organic fraction sources in the lake throughout the Late Pleistocene and Holocene. The temporal framework provided by 14C accelerator mass spectrometry dating allows assigning the sequence to the last 50,cal. ka BP. Arid phases identified in the FUENT-1 sequence are correlated to Heinrich events (HE) and to stadials of the Dansgaard/Oeschger (D/O) cycles. Siliciclastic facies with high magnetic susceptibility values, high Juniperus pollen content, a low Paq index (aquatic macrophysics proxy index), a decrease in the relative percentage of the n -C27 and an increase in the n -C31 alkanes are indicative of arid and colder climatic events related to HE 2, HE 1 and the Younger Dryas (YD). Similar short cold and arid phases during the Holocene were identified at 9.2,8.6, 7.5,7 and 5.5,5,cal. ka BP. In dolomite,mud facies, the pollen data show an increase in the herbs component, mainly , Chenopodiaceae, Artemisia and Ephedra , steppe taxa; a low Paq index, a decrease in the relative percentage of the n -C27 alkane and an increase in the n -C31 alkane are also observed. This facies was probably the result of lower lake levels and more saline,alkaline conditions, which can be interpreted as linked to arid,warm periods. These warm and arid phases were more frequent during Marine Isotope Stage (MIS) 3 and the interstadials of MIS 2. HE 4, HE 2, HE 1 and the YD in core FUENT-1 were immediately followed by increases of warm steppe pollen assemblages that document rapid warming similar to the D/O cycles but do not imply increasing humidity in the area. Fuentillejo hydrology is controlled by changes in the atmospheric and oceanic systems that operated on the North Atlantic region at millennial scale during the last 50,cal. ka BP. Copyright © 2009 John Wiley & Sons, Ltd. [source] Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia collisionLETHAIA, Issue 2 2002XIA QIAO WAN Recent stratigraphic studies in southern Tibet provide new information about the timing of the initial collision between the India and Eurasia continental blocks. The stratigraphic and paleontological evidence document dramatic changes in sedimentary facies and microfauna content across the Cretaceous-Paleogene (K/Pg) boundary. In the Zhongba and Gamba areas in southern Tibet, the K/Pg boundary is marked by a major disconformity, separating platform carbonates from overlying terrigenous conglomerates and sandstones. The stratigraphy of the boundary sequences has recently been improved with the recognition of three foraminiferal assemblages. They are: Maastrichtian Orbitoides-Omphalocyclus, Danian Rotalia-Smoutina-Lockhartia and Thanetian Miscellanea-Daviesina microfaunal assemblages. The K/Pg boundary at the Gamba area is placed between the Orbitoides-Omphalocyclus and Rotalia-Smoutina-Lockhartia faunas. In Tingri, Cretaceous Globotruncana and tertiary Globigerina-Globorotalia microfauna demark the position of the K/Pg boundary. The occurrence of terrigenous sandstones and boulder-size conglomerates in the early Paleocene is compelling evidence for tectonic uplift and emergence of the southern margin of the Lhasa block and of the northern margin of the Indian plate. Therefore, supported by biostratigraphic evidence, we argue that the uplift is caused by the onset of continental collision during the earliest Danian. Progressing plate collision resulted in deformation and fragmentation of the Paleocene carbonate platform and deposition of limestone breccias, which we consider as further evidence for tectonic compression as a result of early continental collision during the Thanetian, earlier than indicated by previous studies in the Himalayas. It is the change in the sedimentary facies and depositional environment that provides the earliest evidence and dating of the initiation of the collision process. From studies of sedimentary strata in southern Tibet, the collision of the India and Lhasa continental blocks was initiated at ,K/Pg boundary time (,65Ma). If that is the case, than the major lithofacies changes at the K/Pg boundary observed in the western Tethys, mostly referred to as intrinsic to the eustatic sea level change, has been driven by continental convergence and collision of the Indian and Eurasian plates. [source] Multiple-Element Matching Reservoir Formation and Quantitative Prediction of Favorable Areas in Superimposed BasinsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010WANG Huaijie Abstract: Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97%. This reflects the effectiveness and reliability of the new theory, methods and technology. [source] Ordovician Carbonate Reservoir Bed Characteristics and Reservoir-Forming Conditions in the Lungudong Region of the Tarim BasinACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010WANG Weili Abstract: Basic characteristics of Ordovician carbonate reservoir beds in the Lungudong region of northeastern part of the Tarim Basin are described in detail and the reservoir-forming conditions of oil and gas are preliminarily discussed in this paper by collecting and sorting out a large amount of data. The carbonate reservoir beds are mainly developed in open-platform and platform marginal facies; the reservoir beds have large changes in and low average values of physical property; the main type is fractured reservoir beds with the fracture-porous type second. The reservoir bed development is chiefly controlled by the distribution of sedimentary facies, tectonic activity and karstification. Whereas the accumulation and distribution of hydrocarbons in the region are controlled by an advantageous structural location, a good reservoir-caprock combination and a favorable transporting system, with the distribution characterized by zones horizontally and belts vertically, the oil and gas are mainly concentrated in areas with structural uplift, densely developed fractures, and surface karst, a vertical vadose zone, and a horizontal undercurrent belt of palaeokarst. [source] Sedimentary Response of Different Fan Types to the Paleogene,Neogene Basin Transformation in the Kuqa Depression, Tarim Basin, Xinjiang ProvinceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009Zhiyong GAO Abstract: A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain, Kuqa Depression, Tarim Basin, Xinjiang province. Two types of fans occurred in the middle,late Paleogene Kumugeliemu and Suweiyi formations: one alluvial, and the other fan delta deposited in a lacustrine setting. Within the early Neogene Jidike Formation, coastal subaqueous fans developed, probably in a deeper water lacustrine setting. The three types of fans are stacked vertically in outcrop with the sequence in ascending order: bottom alluvial, middle fan-delta, and top subaqueous. The subaqueous is a typical coarse-fan deposit occurring in the glutinite member of the Jidike Formation in some wells. Laterally, from the foreland to the lacustrine settings, the distribution pattern of sedimentary facies represents the same three fan types sequentially. The spatial distribution of these fans was controlled by the Paleogene,Neogene Basin transformation, and evolution with different types of fans developed in the Kuqa Depression in response. In the Paleogene, the Kuqa Depression was a rift basin where an alluvial fan was deposited in the foreland setting, which, by early Neogene, became a foreland basin when the lake level changed. With any rise in lake level, fan-deltas migrated from lacustrine to foreland settings, whereas when the lake level fell, fan migration was reversed. In the early Neogene, with increasing slope and rising lake level, fans progressed and covered the previous fan-delta and lacustrine mudstone. Eventually, subaqueous fans developed, forming the present spatial configuration of these three fan types. [source] |