Sediment Delivery (sediment + delivery)

Distribution by Scientific Domains


Selected Abstracts


Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall

HYDROLOGICAL PROCESSES, Issue 18 2006
Chengzhong Pan
Abstract It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (, = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m,2 min,1 from GAM plots, and from 0·765 to 16·128 g m,2 min,1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G , 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Sediment transmission and storage: the implications for reconstructing landform development

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2010
R. C. Chiverrell
Abstract The late Holocene (last 3000 years) development of the lower Ribble valley (northwest England) displays evidence for a complex response to a sediment recharge event forced by land-use change induced increases in erosion and sediment delivery. The deposition of fluvial sediments during the late Holocene was restricted to a series of reaches or depocenters separated by zones with no sediment accumulation constrained by older glacial and fluvial terrain. Apparent reach-wide correlations of fluvial terraces break down under the scrutiny applied by comprehensive and extensive radiocarbon control. Bayesian testing of relative order models show that large-scale geomorphological changes, e.g. the progression from one terrace level to another, were time transgressive between different depocenters. The different histories of sediment delivery and storage are probably a function of local- and process-scale variations in these depocenters, and reflect (dis)connectivity relationships within a reach in propagating a basin-scale change (superslug) in the sediment regime. Disconnectivity in the depositional regime through a fluvial reach limits what we can reconstruct in terms of sediment budgets, but radiocarbon dating of multiple palaeochannels offers considerable potential for landform-based research to uncover rates of change within individual depocenters. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Structural composition and sediment transfer in a composite cirque glacier: Glacier de St. Sorlin, France

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2008
Sam Roberson
Abstract This paper considers the links between structure, sediment transport and sediment delivery at Glacier de St. Sorlin, France. Sediment transported by the glacier is concentrated at flow-unit boundaries as medial moraines, controlled by the position of bedrock outcrops in the accumulation area. Rockfall entrained within primary stratification is tightly folded at flow-unit boundaries under high cumulative strains and laterally compressive stress. High cumulative strains and laterally compressive stresses lead to the development of longitudinal foliation from primary stratification. Folding elevates subglacial sediments into foliation-parallel debris ridges, which are exposed in the ablation area. Crevasses and shear planes within the glacier have little control on sediment transport. Debris stripes in the proglacial area are morphologically similar to foliation-parallel debris ridges; however, they are not structurally controlled, but formed by fluvial erosion. The conclusion of this study is that at Glacier de St. Sorlin proglacial sediment-landform associations are subjected to intense syn- and post-depositional modification by high melt-water discharges, hence their composition does not reflect that of sediments melting out at the terminus. The action of melt water limits the potential of the sedimentary record to be used to constrain numerical models of past glacier dynamics in debris-poor glacierized Alpine catchments. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Evaluation of a dynamic multi-class sediment transport model in a catchment under soil-conservation agriculture

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2008
Peter Fiener
Abstract Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi-class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil-conservation agriculture, it should be successfully applicable for soil-conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Interrill erosion on cultivated Greek soils: modelling sediment delivery

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2006
D. Dimoyiannis
Abstract For interrill erosion, raindrop-induced detachment and transport of sediment by rainfall-disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter-actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para-meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5-year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30-minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30-minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638,EI30tan(,) (R2 = 0·893***), where , is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30-minute rain intensity and , the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Anatomy of a Pennine peat slide, Northern England

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2003
Dr. Jeff Warburton
Abstract This paper describes and analyses the structure and deposits of a large UK peat slide, located at Hart Hope in the North Pennines, northern England. This particular failure is unusual in that it occurred in the winter (February, 1995) and shows excellent preservation of the sedimentary structures and morphology, both at the failure scar and downstream. The slide was triggered by heavy rain and rapid snowmelt along the line of an active peatland stream flush. Detailed mapping of the slide area and downstream deposits demonstrate that the slide was initiated as a blocky mass that degenerated into a debris flow. The slide pattern was complex, with areas of extending and compressive movement. A wave-like motion may have been set up in the failure. Within the slide site there was relatively little variability in block size (b axis); however, downstream the block sizes decrease rapidly. Stability analysis suggests the area at the head of the scar is most susceptible to failure. A ,secondary' slide area is thought to have only been initiated once the main failure had occurred. Estimates of the velocity of the flowing peat mass as it entered the main stream channel indicate a flow velocity of approximately 10 m s,1, which rapidly decreases downstream. A sediment budget for the peat slide estimates the failed peat mass to be 30 800 t. However, sediment delivery to the stream channel was relatively low. About 37% of the failed mass entered the stream channel and, despite moving initially as debris flow, the amount of deposition along the stream course and on the downstream fan is small (only about 1%). The efficiency of fluvial systems in transporting the eroded peat is therefore high. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia

HYDROLOGICAL PROCESSES, Issue 17 2009
Hugh G. Smith
Abstract In this study, suspended sediment concentration (SSC) and discharge (Q) hysteresis patterns recorded at the outlets of two nested upland catchments in south-eastern Australia were examined. Detailed monitoring of sediment flux was undertaken in a 1·64 km2 sub-catchment located within a 53·5 km2 catchment for which sediment yield was measured and the extent of incised channels mapped. The analysis of SSC,Q hysteresis patterns was supplemented by these additional datasets to contribute to the explanation of observed patterns. Clockwise SSC,Q hysteresis loops (with the suspended sediment peak leading the discharge peak) were recorded most frequently at both sites. This was attributed to initial rapid delivery of sediment from channel banks, the dominant sediment source in the sub-catchment and probably also for the catchment, in conjunction with remobilization of in-channel fine sediment deposits. Sediment exhaustion effects were considered to enhance clockwise hysteresis, with reduced SSC on the falling limb of event hydrographs. Pronounced exhaustion effects were observed on some multi-rise events, with subsequent flow peaks associated with much reduced sediment peaks. To compare SSC,Q hysteresis patterns between the two catchments, a dimensionless similarity function (SF) was derived to differentiate paired-event hysteresis patterns according to the extent of pattern similarity. This analysis, coupled with the other datasets, provided insight into the function of erosion and sediment delivery processes across the spatial scales examined and indicated the dependency of between-scale suspended sediment transfer on defined flow event scenarios. Quantitative measures of event SSC,Q hysteresis pattern similarity may provide a mechanism for linking the timing and magnitude of process response across spatial scales. This may offer useful insights into the between-scale linkage of dominant processes and the extent of downstream suspended sediment delivery. Copyright © 2009 John Wiley & Sons, Ltd. [source]


The use of riparian vegetated filter strips to reduce river sediment loads: an overestimated control measure?

HYDROLOGICAL PROCESSES, Issue 20 2006
Gert Verstraeten
Abstract The spatially distributed soil erosion and sediment delivery model WATEM/SEDEM was used to simulate the impact of riparian vegetated filter strips (RVFSs) on river sediment delivery at different spatial scales. For a field plot with a straight slope, sediment reduction by the RVFSs is comparable to results obtained through experimental set-ups elsewhere (i.e. >70%). However, at the scale of an entire catchment, sediment reduction is much less (i.e. ±20%) due to (1) overland flow convergence, which reduces the sediment trapping efficiency of an RVFS, and (2) because part of the sediment bypasses the RVFSs through ditches, sewers and road surfaces. These results suggest that, at the catchment scale, RVFSs should be accompanied with other conservation techniques that are more appropriate for reducing river sediment loads, and that also reduce on-site soil erosion. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall

HYDROLOGICAL PROCESSES, Issue 18 2006
Chengzhong Pan
Abstract It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (, = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m,2 min,1 from GAM plots, and from 0·765 to 16·128 g m,2 min,1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G , 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The effect of truck traffic and road water content on sediment delivery from unpaved forest roads

HYDROLOGICAL PROCESSES, Issue 8 2006
Gary J. Sheridan
Abstract A study investigated the effect of truck-traffic intensity and road water-content on the quality of runoff water from unsealed forest roads. Three sections of a gravel-surfaced forest road were instrumented and exposed to low and high levels of truck traffic during wet winter conditions and dry summer conditions between July 2001 and December 2002. Rainfall, runoff, road moisture, and traffic were measured continuously, and suspended and bedload sediments were integrated measurements over 2-week site-service intervals. The median suspended sediment concentration from the three road segments under low truck-traffic conditions (less than nine return truck passes prior to a storm) was 269 mg l,1, increasing 2·7-fold to a median of 725 mg l,1 under high truck-traffic conditions (greater than or equal to nine return truck passes prior to a storm). These concentrations, and increases due to traffic, are substantially less than most previously reported values. When these data are expressed as modified universal soil loss equation (MUSLE) erodibility values K, accounting for differences in rainfall energy, site characteristics and runoff, high traffic resulted in a road surface that was four times more erodible than the same road under low traffic conditions. Using multiple regression, traffic explained 36% of the variation in MUSLE erodibility, whereas road water content was not significant in the model. There was little difference in the erodibility of the road when trafficked in low water-content compared with high water-content conditions (MUSLE K values of 0·0084 versus 0·0080 respectively). This study shows that, for a good quality well-maintained gravel forest road, the level of truck traffic affects the sediment concentration of water discharging from the road, whereas the water content of the road at the time of that traffic does not (note that traffic is not allowed during runoff events in Victoria). These conclusions are conditional upon the road being adequately maintained so that trafficking does not compromise the lateral drainage of the road profile. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Minor and trace element export from a glacierized Alpine headwater catchment (Haut Glacier d'Arolla, Switzerland)

HYDROLOGICAL PROCESSES, Issue 18 2001
Andrew Mitchell
Abstract Major ion concentrations in meltwaters draining glacial environments have been widely reported. However, concentrations of minor and trace elements have received scant attention. This study presents trace and minor element variations in bulk meltwaters draining Haut Glacier d'Arolla (Switzerland) based on twice-daily sampling throughout the 1999 ablation season, which represents the most detailed meltwater quality dataset to date. In order to assess the mode of export from the catchment, these elements are partitioned into (i) ,dissolved' and (ii) ,particulate-associated' minor and trace element components. A computer-based speciation model (PHREEQCi) was applied to the bulk meltwater data, suggesting that Ba, Be, Cd, Cu, Li, Rb and Sr exist primarily as mobile monovalent or divalent dissolved cations, which may be involved in interactions with suspended sediment surfaces. Conversely, the model predicts the precipitation of Fe, Al, Mn and Cr (oxi)hydroxides, suggesting these species may be predominantly transported as colloids, which may remove other minor and trace elements from solution by co-precipitation reactions. Laboratory leaching experiments on suspended sediments and fresh rock powder suggests that minor and trace element concentrations may also be influenced by (oxy)hydroxide precipitation and adsorption,desorption reactions with suspended sediment surfaces. The quantity and transport mode of trace and minor elements may influence their bioavailability downstream of glacierized headwater catchments. Further, the enrichment of many dissolved minor and trace elements in meltwaters compared with world stream-waters, coupled with the timing of water and sediment delivery during the summer months, may have implications for downstream aquatic environments. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Spatial patterns of suspended sediment yields in a humid tropical watershed in Costa Rica

HYDROLOGICAL PROCESSES, Issue 12 2001
Jagdish Krishnaswamy
Abstract An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130,1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971,88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non-parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km,2 year,1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km,2 year,1 (at 4766·7 km2) at the basin mouth (1971,92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub-basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro-climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower-lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree-crops. High rainfall erosivity (>7400 MJ mm ha,1 h,1 year ,1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower-lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Fluvial response to Holocene climate change in low-order streams of central Mexico,

JOURNAL OF QUATERNARY SCIENCE, Issue 5 2010
Aleksander Borejsza
Abstract Alluvial sequences constitute a recognised source of information on past environmental change, but one that has scarcely been tapped in central Mexico. This paper reviews what is currently known about the Holocene alluvial stratigraphy of the region, focusing on the interplay between climate and the pace and style of sedimentation in the incised headwater reaches of stream networks. The records obtained in five different drainage basins , four in the state of Tlaxcala and one in Guanajuato , are presented and compared to published reconstructions of climate change. A near-synchronous incision of all stream networks occurred close to 10 200 14C a BP in response to an increase in precipitation and stream discharge. A spell of very humid but markedly seasonal conditions ensued, resulting in the formation of wet meadows along streams and the accumulation of thick fine-textured valley fills dominated by cumulic soil A horizons. After 9100 14C a BP a transition to a warmer and more arid climate provoked the thinning of vegetation cover on slopes, accelerated runoff and increased sediment delivery to streams. The aggradation of coarser-textured valley fills poor in organic matter set in. It ceased or slowed down significantly after a few millennia as the studied stream reaches achieved a near-graded condition adjusted to the relatively stable climate. Arid mid Holocene conditions are also reflected in the abundant precipitation of secondary carbonates in Guanajuato. At 3100 14C a BP higher precipitation caused more frequent flooding and a resumption of aggradation. Shortly after that date sedentary farmers colonised Tlaxcala. Agriculture altered runoff and sediment delivery to streams and accelerated cut-and-fill cycles on a scale that masked the impact of any climatic fluctuations. Guanajuato was colonised later and its alluvial record suggests the persistence of a humid climate at least until 1000 14C a BP. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Marginal formation of De Geer moraines and their implications to the dynamics of grounding-line recession,

JOURNAL OF QUATERNARY SCIENCE, Issue 2 2005
Mattias Lindén
Abstract De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine-dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding-line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal-infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity-flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding-line retreat (ca. 400,m,yr,1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build-up. Copyright © 2005 John Wiley & Sons, Ltd. [source]


SOIL EROSION AND SEDIMENT YIELD PREDICTION ACCURACY USING WEPP,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2004
John M. Laflen
ABSTRACT: The objectives of this paper are to discuss expectations for the Water Erosion Prediction Project (WEPP) accuracy, to review published studies related to WEPP goodness of fit, and to evaluate these in the context of expectations for WEPP's goodness of fit. WEPP model erosion predictions have been compared in numerous studies to observed values for soil loss and sediment delivery from cropland plots, forest roads, irrigated lands and small watersheds. A number of different techniques for evaluating WEPP have been used, including one recently developed where the ability of WEPP to accurately predict soil erosion can be compared to the accuracy of replicated plots to predict soil erosion. In one study involving 1,594 years of data from runoff plots, WEPP performed similarly to the Universal Soil Loss Erosion (USLE) technology, indicating that WEPP has met the criteria of results being "at least as good with respect to observed data and known relationships as those from the USLE," particularly when the USLE technology was developed using relationships derived from that data set, and using soil erodibility values measured on those plots using data sets from the same period of record. In many cases, WEPP performed as well as could be expected, based on comparisons with the variability in replicate data sets. One major finding has been that soil erodibility values calculated using the technology in WEPP for rainfall conditions may not be suitable for furrow irrigated conditions. WEPP was found to represent the major storms that account for high percentages of soil loss quite well,a single storm application that the USLE technology is unsuitable for,and WEPP has performed well for disturbed forests and forest roads. WEPP has been able to reflect the extremes of soil loss, being quite responsive to the wide differences in cropping, tillage, and other forms of management, one of the requirements for WEPP validation. WEPP was also found to perform well on a wide range of small watersheds, an area where USLE technology cannot be used. [source]


ADJUSTMENT OF STREAM CHANNEL CAPACITY FOLLOWING DAM CLOSURE, YEGUA CREEK, TEXAS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2002
Anne Chin
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long-term implications for sediment delivery through the system. [source]


Sediment-bound nutrient export from micro-dam catchments in Northern Ethiopia

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2008
N. Haregeweyn
Abstract The losses in soil nutrients (nitrogen (N), available phosphorus (Pav), organic carbon (OC), potassium (K), calcium (Ca) and magnesium (Mg)) in the catchment and the storage in the reservoir as a result of sediment delivery were assessed in 13 catchments/reservoirs in Tigray, Northern Ethiopia. This specifically dealt with factors controlling the losses, the fertility status of the deposited sediment, the nutrient export (NE) rates and associated costs. Enrichment ratio (ER) values >1 were observed for the plant nutrients and the finer soil fractions. The high ER is associated with the preferential transport of nutrients bound to finer soil fractions and the parent material dissolution and its transport via runoff. However, the fertility status of the deposited sediment is not sufficient by itself to support a sustainable crop growth and hence external addition is necessary, mainly for N and Pav fertilizer. Generally, rates of NE were high. The high OC export on the other hand dictates the potential of reservoir sediments for OC sequestration. The cost price of loss of only N and Pav, eroded from the catchment slopes, was estimated at ,34·2 million (Euros) in March 2006 for the Tigray. Pity enough, policy makers and beneficiaries do not realize the magnitude of the problem, which forms a major threat for the crop production in the country. Therefore, it is important not only to make the public aware of the problem but also of implementing integrated soil fertility management practices. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Appraising riparian management effects on benthic macroinvertebrates in the Wye River system

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010
Esther Clews
Abstract 1.Agriculture, urbanization or forestry in river catchments can influence river organisms through diffuse effects on hydrology and hydrochemistry, or local effects on habitat character, bank erosion and sediment delivery. Riparian buffer zones are sometimes established to mitigate undesirable effects on salmonids, but consequences for organisms such as macroinvertebrates are less well known. 2.Riparian fencing and tree coppicing were carried out on upland tributaries of the Welsh River Wye (UK) from 1997 onwards with the aim of enhancing conditions for salmonid fish. The present study used routine, agency monitoring data to compare assemblages in three recently managed streams and five adjacent control streams. Data between 1995 and 2004 were used to assess treatment effects through time. 3.Post-treatment (2000,2004) assemblages were richer in recently managed streams than in controls, mostly due to apparent gains of taxa typical of channel margins and lowland, warmer conditions. However, results were equivocal because invertebrate families typical of lowland, more eutrophic conditions increased in occurrence in all reaches irrespective of treatment, while overall richness declined. 4.This study illustrates how routine monitoring data can reveal some effects of riparian land-use and management on stream biota. However, improved experimental design, ideally using a before,after control,intervention approach, would have allowed more effective assessment in this case study where confounding trends were so marked. We advocate using such approaches in future restoration studies to allow stronger inference and greater statistical power. The recent general decline in the richness of typical headwater organisms in the Wye system requires investigation. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Evaluating the effects of riparian restoration on a temperate river-system using standardized habitat survey

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010
E. Clews
Abstract 1.The restoration of degraded riparian zones to improve a range of functions is attracting increasing interest, but there are still questions about (i) how effectively restoration changes riparian or channel conditions; (ii) whether riparian management offsets the effects of wider catchment pressures; and (iii) whether these effects can be detected quantitatively. 2.A catchment-scale experiment was used to assess the effects of riparian restoration on riparian and channel conditions in the Welsh River Wye. In a hierarchically designed survey, variations in river habitat character were assessed among tributaries where riparian zones were recently managed for restoration (n=9 streams), unmanaged controls (n=12), intensively grazed pastures (n=3) and coniferous plantation (n=3). Management between 1997 and 2003, largely involving coppicing, was designed to exclude grazing through fencing in order to enable vegetation development while creating salmonid refuges. River habitat character was assessed using the UK ,River Habitat Survey' (RHS) method, with habitat variation quantified using Principal Components Analysis. 3.Stream habitats varied significantly among treatment categories. Streams draining plantation conifer had ,harder' channel features, while those draining intensively grazed pasture were characterized by finer substrata and more active channels than elsewhere. Riparian management reduced livestock trampling (= poaching) and increased algal cover relative to controls. Coppicing and riparian fencing successfully excluded grazing on banks while increasing in-stream vegetation cover, but did not affect substrata, flow-types and channel features. 4.These data show that RHS can detect habitat variation among streams in contrasting riparian land-use, revealing some apparently significant effects of recent restoration. We advocate longer-term investigations at reach to catchment scales to assess longer-term effects on channel and flow character, and to appraise fully the extent to which local riparian management can offset impairments at a catchment or larger scale, such as altered run-off regimes, sediment delivery and climate change. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Palaeo-ice streams, trough mouth fans and high-latitude continental slope sedimentation

BOREAS, Issue 1 2003
Colm Ó Cofaigh
The classical model of trough mouth fan (TMF) formation was developed in the Polar North Atlantic to explain large submarine fans situated in front of bathymetric troughs that extend across continental shelves to the shelf break. This model emphasizes the delivery of large volumes of subglacial sediment to the termini of ice streams flowing along troughs, and subsequent re-deposition of this glacigenic sediment down the continental slope via debris-flow processes. However, there is considerable variation in terms of the morphology and large-scale sediment architecture of continental slopes in front of palaeo-ice streams. This variability reflects differences in slope gradient, the relative contributions of meltwater sedimentation compared with debris-flow deposition, and sediment supply/geology of the adjacent continental shelf. TMF development is favoured under conditions of a low (<1°) slope gradient; a passive-margin tectonic setting; abundant, readily erodible sediments on the continental shelf - and thus associated high rates of sediment delivery to the shelf edge; and a wide continental shelf. The absence of large sediment fans on continental slopes in front of cross-shelf troughs should not, however, be taken to indicate the former absence of palaeo-ice streams in the geological record. [source]