Sediment Concentration (sediment + concentration)

Distribution by Scientific Domains


Selected Abstracts


Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2008
Guan-Wei Lin
Abstract Patterns and rates of landsliding and fluvial sediment transfer in mountain catchments are determined by the strength and location of rain storms and earthquakes, and by the sequence in which they occur. To explore this notion, landslides caused by three tropical cyclones and a very large earthquake have been mapped in the Chenyoulan catchment in the Taiwan Central Range, where water and sediment discharges and rock strengths are well known. Prior to the MW 7·6 Chi-Chi earthquake in 1999, storm-driven landslide rates were modest. Landslides occurred primarily low within the landscape in shallow slopes, reworking older colluvial material. The Chi-Chi earthquake caused wide-spread landsliding in the steepest bedrock slopes high within the catchment due to topographic focusing of incoming seismic waves. After the earthquake landslide rates remained elevated, landslide patterns closely tracking the distribution of coseismic landslides. These patterns have not been strongly affected by rock strength. Sediment loads of the Chenyoulan River have been limited by supply from hillslopes. Prior to the Chi-Chi earthquake, the erosion budget was dominated by one exceptionally large flood, with anomalously high sediment concentrations, caused by typhoon Herb in 1996. Sediment concentrations were much higher than normal in intermediate size floods during the first 5 years after the earthquake, giving high sediment yields. In 2005, sediment concentrations had decreased to values prevalent before 1999. The hillslope response to the Chi-Chi earthquake has been much stronger than the five-fold increase of fluvial sediment loads and concentrations, but since the earthquake, hillslope sediment sources have become increasingly disconnected from the channel system, with 90 per cent of landslides not reaching into channels. Downslope advection of landslide debris associated with the Chi-Chi earthquake is driven by the impact of tropical cyclones, but occurs on a time-scale longer than this study. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Chlorinated hydrocarbons in flatfishes from the Southern California, USA, Bight

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2000
Kenneth Schiff
Abstract Alhough inputs of chlorinated hydrocarbon compounds to the Southern California Bight (SCB) are presently low, historical deposits represent a source of bioaccumulation potential to sediment-associated fauna. To assess this bioaccumulation potential, 14 chlorinated hydrocarbon classes were measured in livers of three species of flatfish collected from 63 randomly selected sites on the coastal shelf between Point Conception and the United States,Mexico international border. Tissue contamination was widespread throughout the SCB, but was limited to just two chlorinated hydrocarbon classes. Virtually 100% of Pacific sanddab (Citharichthys sordidus) and longfin sanddab (Citharichthys xanthostigma) populations were estimated to be contaminated with dichlorodiphenyltrichloroethane (total DDT = sum of o,p, and p,p, isomers of DDT + dichlorodiphenyldichloroethylene [DDE] + dichlorodiphenyldichloroethane [DDD]) and/or polychlorinated biphenyls (total PCBs). Total DDT also contaminated the majority (64%) of the Dover sole (Microstomus pacificus) population in the SCB. Total PCB measurements in tissues of SCB flatfish were dominated by 12 congeners (52, 66, 87, 101, 105, 118, 128, 138, 153, 170, 180, and 187), which averaged 95% of the combined mass of the 27 congeners analyzed. Sediment concentrations (normalized by total organic carbon content) accounted for most of the variability observed in tissue concentrations (normalized by lipid content) for 8 of these 12 congeners and total PCBs. Normalized sediment concentrations were also significantly correlated to normalized tissue concentrations for total DDT and p,p,-DDE. Tissue concentrations measured in this study from reference areas of the SCB were compared to tissue concentrations measured from reference areas in studies conducted in 1977 and 1985. Total DDT and total PCB liver concentrations were found to have decreased one to two orders of magnitude in Pacific and longfin sanddabs between 1985 and 1994. Total DDT and total PCB liver concentrations decreased 5- to 35-fold in Dover sole between 1977 and 1994. [source]


IMPACT OF COAL SURFACE MINING AND RECLAMATION ON SUSPENDED SEDIMENT IN THREE OHIO WATERSHEDS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2000
James V. Bonta
ABSTRACT: Prior to PL95,87 little research had been conducted to determine the impacts of mining and reclamation practices on sediment concentrations and yields on a watershed scale. Furthermore, it was unknown whether sediment yield and other variables would return to undisturbed levels after reclamation. Therefore, three small watersheds, with differing lithologies and soils, were monitored for runoff and suspended sediment concentrations during three phases of watershed disturbances: undisturbed watershed condition, mining and reclamation disturbances, and post-reclaimed condition. Profound increases in suspended-sediment concentrations, load rates, and yields due to mining and reclamation activities, and subsequent drastic decreases after reclamation were documented. Even with increases in runoff potential, reductions in suspended-sediment concentrations and load rates to below or near undisturbed-watershed levels is possible by using the mulch-crimping technique and by removing diversions. Maximum concentrations and load rates occurred during times of active disturbances that exposed loose soil and spoil to high-intensity rains. Sediment concentrations remained elevated compared with the undisturbed watershed when diversions were not well maintained and overtopped, and when they were not removed for final reclamation. Diversions are useful for vegetation establishment, but should be maintained until they are removed for final reclamation after good vegetative cover is established. [source]


Spectrally based remote sensing of river bathymetry

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2009
Carl J. Legleiter
Abstract This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of a simple, ratio-based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing the accuracy of spectrally based depth retrieval under field conditions via ground-based reflectance measurements; and (4) producing bathymetric maps for a pair of gravel-bed rivers from hyperspectral image data. Consideration of the relative magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth retrieval is appropriate: the remotely sensed signal must be dominated by bottom-reflected radiance. We developed a simple algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is valid and which yield strong, linear relationships between an image-derived quantity X and flow depth d. OBRA of simulated spectra indicated that water column optical properties were accounted for by a shorter-wavelength numerator band sensitive to scattering by suspended sediment while depth information was provided by a longer-wavelength denominator band subject to strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792 to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Suspended sediment transport in a small Mediterranean agricultural catchment

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2009
Joan Estrany
Abstract The aim of this study is to analyze suspended sediment transport in a Mediterranean agricultural catchment under traditional soil and water conservation practices. Field measurements were conducted in Can Revull, a small ephemeral catchment (1.03 km2) on the island of Mallorca. This study uses continuous turbidity records to analyse suspended sediment transport regimes, construct and interpret multiple regression models of total suspended sediment concentration (SSC) and of SSC related to stormflow discharge, and assess the sediment loads and yields of three hydrological years (2004,2005 to 2006,2007). An annual average SSC of 17.3 mg l,1, with a maximum of 2270 mg l,1, was recorded in the middle of the winter period when rainfall intensities are high and headwater slopes are ploughed and thus bare. Strong seasonal contrasts of baseflow dynamics associated with different degrees of dilution provide a large scatter in SSC and in the derived rating curves, reflecting that other factors control the supply of suspended sediment. Multiple regression models identify rainfall intensity as the most significant variable in sediment supply. However, under baseflow conditions, physical and biological processes generate sediment in the channel that is subsequently removed during high flow. In contrast, when baseflow is not present, rainfall intensity is the only process that supplies sediment to the channel, mostly from hillslopes. Considering the study period as average in terms of total annual rainfall and intensities, suspended sediment yields were an order of magnitude lower than those obtained in other Mediterranean catchments, a factor that can be related to the historical use of soil conservation practices. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Consequences of hyperconcentrated flow for process-based soil erosion modelling on the Chinese Loess Plateau

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2006
Rudi Hessel
Abstract High sediment concentrations in runoff are a characteristic feature of the Chinese Loess Plateau, and are probably caused by factors such as the occurrence of erodible materials on steep slopes, the characteristics of the loess and the harsh climate that results in low plant cover. When sediment concentration increases, fluid density increases, viscosity increases and settling velocity decreases. These effects become increasingly important with increasing concentration and can result in flow behaviour that is quite different from that of clear water flow. Although the net effect of these changes on the flow is not always apparent, erosion models that deal with high sediment concentrations should consider such effects and could include corrections for some of these effects. A case study in a small catchment on the Loess Plateau indicated that sediment concentrations were considerable, and literature data suggested that for such sediment concentrations, corrections for settling velocity, fluid density and viscosity are needed. Furthermore, a number of corrections are necessary to be able to compare field measurements with results of soil erosion models: sediment volume should be subtracted from runoff volume and a density correction is needed to use data from a pressure transducer. For flumes that were used to measure discharge from smaller areas inside the catchment, the measured water level should be corrected by subtracting the sediment level in the flume from the water level, while the sediment volume should also be subtracted from the discharge. Finally, measured concentration should be corrected to give concentration expressed as grams per litre of clear water, since soil erosion models express sediment concentration in this way. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Soil detachment and transport on field- and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sediment

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2006
O. Malam Issa
Abstract Field- and laboratory-scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi-arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h,1 with a duration of 1 to 2 hours. Time-series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size-selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport-limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size-selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Predictability of river flow and suspended sediment transport in the Mississippi River basin: a non-linear deterministic approach

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2005
Bellie Sivakumar
Abstract As the Mississippi River plays a major role in fulfilling various water demands in North America, accurate prediction of river flow and sediment transport in the basin is crucial for undertaking both short-term emergency measures and long-term management efforts. To this effect, the present study investigates the predictability of river flow and suspended sediment transport in the basin. As most of the existing approaches that link water discharge, suspended sediment concentration and suspended sediment load possess certain limitations (absence of consensus on linkages), this study employs an approach that presents predictions of a variable based on history of the variable alone. The approach, based on non-linear determinism, involves: (1) reconstruction of single-dimensional series in multi-dimensional phase-space for representing the underlying dynamics; and (2) use of the local approximation technique for prediction. For implementation, river flow and suspended sediment transport variables observed at the St. Louis (Missouri) station are studied. Specifically, daily water discharge, suspended sediment concentration and suspended sediment load data are analysed for their predictability and range, by making predictions from one day to ten days ahead. The results lead to the following conclusions: (1) extremely good one-day ahead predictions are possible for all the series; (2) prediction accuracy decreases with increasing lead time for all the series, but the decrease is much more significant for suspended sediment concentration and suspended sediment load; and (3) the number of mechanisms dominantly governing the dynamics is three for each of the series. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuarius

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2005
Gunther Rosen
Abstract The lethal toxicity of the explosive compounds 14C-labeled 2,4,6-trinitrotoluene (TNT) and nonradiolabeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the estuarine amphipod Eohaustorius estuarius was investigated in 10-d spiked sediment exposures. The 10-d median lethal concentration (LC50) was determined using the sum molar initial concentration of TNT, ami-nodinitrotoluenes (ADNTs), and diaminonitrotoluenes (DANTs), as determined by high-performance liquid chromatography (HPLC), and collectively referred to as HPLC-TNT*. Despite expectations of higher toxicity in sandy sediment (Yaquina Bay [YB], OR, USA) compared to relatively fine-grained sediment (San Diego Bay [SDB], CA, USA), LC50 values were similar: 159 and 125 ,mol/kg, for YB and SDB sediments, respectively. When expressed as the sum of TNT and all its degradation products (14C-TNT*), LC50s were approximately two times the corresponding LC50s determined by HPLC. The HPLC-TNT* fraction likely corresponds to the most bioavailable and toxic transformation products. The concentrations of 14C-TNT* in tissues were substantially higher than those for HPLC-TNT*, suggesting that compounds other than TNT and its major aminated transformation products were prevalent. Critical body residues were similar for exposures to SDB (11.7 ,mol/kg) and YB sediments (39.4 ,mol/kg), despite marked differences in the nature of compounds available for uptake in the exposure media. The critical body residues for E. estuarius are lower than those reported for other aquatic invertebrates (83,172 ,mol/kg). Unlike observations for TNT, RDX was only loosely associated with SDB sediment, with near complete recovery of the parent compound by chemical analysis. Exposure to RDX did not result in significant mortality even at the highest measured sediment concentration of 10,800 ,mol/kg dry weight, nor tissue concentrations as high as 96 ,mol/kg wet weight. The lack of RDX lethal effects in this study is consistent with results reported for other invertebrate species. [source]


Combined effects of the fungicide propiconazole and agricultural runoff sediments on the aquatic bryophyte Vesicularia dubyana

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2005
Qinglan Wu
Abstract Pesticides, firmly attached to the topsoil, might enter nearby watercourses at periods with high erosive loss of sediments. Therefore, exposure of aquatic organisms to these low mobility pesticides, in many cases, will coincide with a high sediment concentration. In this study, both individual and combined effects of propiconazole and runoff sediment on the aquatic model bryophyte Vesicularia dubyana are studied. Individual exposure to propiconazole induced responses in V. dubyana at rather low concentration levels (,1 ,g/L), showing that harmful effects of propiconazole potentially may occur in watercourses draining propiconazole-treated fields. Individual exposure to the sediment size fractions S1 (0.16,2 ,m) and S2 (0.03,0.16 ,m) caused plant stress at a concentration of 100 mg/L. The coarser fraction S1 showed strong inhibition effects on photosynthesis, probably due to light attenuation. Compared to S1, the suspension with the finer fraction S2 showed lower turbidity, higher nutrient content, and a higher proportion of sediment-bound propiconazole. The combined effects of propiconazole and suspended sediment are dependent on concentrations of sediment and propiconazole. At low sediment concentration (e.g., 100 mg/L), neither S1 nor S2 reduce the toxicity of propiconazole, as only 2% of propiconazole are bound to particles. An increase in sediment concentration decreases the bioavailable concentration of propiconazole; however, at the same time, this increases the turbidity, thereby inhibiting plant photosynthesis. [source]


Uptake and accumulation of sediment-associated 4-nonylphenol in a benthic invertebrate (Lumbriculus variegatus, freshwater oligochaete)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2005
Valeria Croce
Abstract In the present work, the oligochaete Lumbriculus variegatus was exposed for 56 d to lake sediment spiked with 4-nonylphenol (4-NP), which is a breakdown product of alkylphenol polyethoxylates, an important class of nonionic surfactants. During the exposure period, the content of 4-NP was determined in the oligochaetes, sediment, overlying water, and pore water in order to monitor the distribution of the 4-NP in the compartments of the test system. Concentration of 4-NP in L. variegatus increased linearly over the course of the test, with an uptake rate coefficient of 1.9 × 10,2 (± 0.2 × 10,2; [g carbon/(g lipid-h)]). No steady state was reached at the end of the exposure period, suggesting that the elimination of 4-NP by the organism was negligible. Ingested sediments played an important role in the accumulation of 4-NP in L. variegatus, which may achieve very high 4-NP body concentrations. The 56-d biota sediment accumulation factor (BSAF) was 24 ± 7 g carbon/g lipid. L. variegatus also was exposed to 4-NP-contaminated field sediment, and field oligochaetes and sediments were collected for 4-NP pollution assessment in aquatic ecosystem. The 4-NP uptake with natural sediment was in accordance with that measured with spiked sediments, suggesting that the bioavailability of sediment-associated 4-NP for L. variegatus was not affected by 4-NP sediment concentration and abiotic sediment characteristics. The BSAFs measured in field oligochaetes, ranging from 39 to 55 g carbon/g lipid, was relatively higher than the bioaccumulation factor measured in laboratory tests. The results suggest that 4-NP concentration can reach high levels in benthic oligochaetes; this can be an important way of exposure for their pelagic predators. [source]


The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002
Karlijn I. E. Holthaus
Abstract The endocrine-disrupting impact of steroid estrogens on fish will be strongly influenced by their distribution between sediment and water. Laboratory studies were performed to investigate the potential for sorption of 17,-estradiol (E2) and 17,-ethinylestradiol (EE2) to bed and suspended sediments taken from five British rivers. Sediment material was collected from the Rivers Aire and Calder (located in urban and industrialized areas in Yorkshire, UK), the River Thames (at a relatively rural site in Oxfordshire, UK), and from the estuaries of the Rivers Tees and Tyne. Using anaerobic conditions to inhibit biodegradation, it was found that 80 to 90% of binding to bed sediments was complete within 1 d, but that an equilibrium had not been reached after 2 d. Bed sediments gave distribution coefficients (Kd) ranging from 4 to 74 L/kg for E2 and from 8 to 121 L/kg for EE2 for samples taken over a range of seasons and locations. Sorption to suspended sediment gave Kd values ranging from 21 to 122 L/kg for E2 and 19 to 260 L/kg for EE2. However, these Kd values suggest less than 1% removal of the steroid estrogens from the aqueous phase given the ambient suspended sediment concentration. In the bed sediments, higher Kd values were associated with smaller particle size and higher organic carbon content. In most cases, the Kd values obtained for EE2 were higher than those for E2 by a factor of up to three. [source]


Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2005
Uttam Kumar Mandal
Summary Stones on the surface of the soil enhance infiltration and protect the soil against erosion. They are often removed in modern mechanized agriculture, with unfortunate side-effects. We evaluated experimentally the influence of surface stones on infiltration, runoff and erosion under field conditions using a portable rainfall simulator on bare natural soil in semi-arid tropical India, because modernization and mechanization often lead to removal of these stones in this region. Four fields with varied cover of stones from 3 to 65% were exposed to three rainfall intensities (48.5, 89.2 and 136.8 mm hour,1). Surface stones retarded surface runoff, increased final infiltration rates, and diminished sediment concentration and soil loss. The final infiltration ranged from 26 to 83% of rainfall when the rainfall intensity was 136.8 mm hour,1. The reduction in runoff and soil erosion and increase in infiltration were more pronounced where stones rested on the soil surface than where they were buried in the surface layer. The sediment yield increased from 2 g l,1 for 64.7% stone cover with rainfall of 48.5 mm hour,1 to 70 g l,1 for 3.5% stone cover with rain falling at 136.8 mm hour,1. The soil loss rate was less than 2 t ha,1 hour,1 for the field with stone cover of 64.7% even when the rainfall intensity was increased to 136.8 mm hour,1. The effects of stones on soil loss under the varied rainfall intensities were expressed mathematically. The particles in the sediment that ran off were mostly of silt size. [source]


Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia

HYDROLOGICAL PROCESSES, Issue 17 2009
Hugh G. Smith
Abstract In this study, suspended sediment concentration (SSC) and discharge (Q) hysteresis patterns recorded at the outlets of two nested upland catchments in south-eastern Australia were examined. Detailed monitoring of sediment flux was undertaken in a 1·64 km2 sub-catchment located within a 53·5 km2 catchment for which sediment yield was measured and the extent of incised channels mapped. The analysis of SSC,Q hysteresis patterns was supplemented by these additional datasets to contribute to the explanation of observed patterns. Clockwise SSC,Q hysteresis loops (with the suspended sediment peak leading the discharge peak) were recorded most frequently at both sites. This was attributed to initial rapid delivery of sediment from channel banks, the dominant sediment source in the sub-catchment and probably also for the catchment, in conjunction with remobilization of in-channel fine sediment deposits. Sediment exhaustion effects were considered to enhance clockwise hysteresis, with reduced SSC on the falling limb of event hydrographs. Pronounced exhaustion effects were observed on some multi-rise events, with subsequent flow peaks associated with much reduced sediment peaks. To compare SSC,Q hysteresis patterns between the two catchments, a dimensionless similarity function (SF) was derived to differentiate paired-event hysteresis patterns according to the extent of pattern similarity. This analysis, coupled with the other datasets, provided insight into the function of erosion and sediment delivery processes across the spatial scales examined and indicated the dependency of between-scale suspended sediment transfer on defined flow event scenarios. Quantitative measures of event SSC,Q hysteresis pattern similarity may provide a mechanism for linking the timing and magnitude of process response across spatial scales. This may offer useful insights into the between-scale linkage of dominant processes and the extent of downstream suspended sediment delivery. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Use of turbidometry to characterize suspended sediment and phosphorus fluxes in the Lake Tahoe basin, California, USA

HYDROLOGICAL PROCESSES, Issue 3 2007
Andrew P. Stubblefield
Abstract The efficacy of in-stream nephelometric turbidometry as a surrogate for total suspended solids (TSS) and total phosphorus (TP) concentrations was evaluated for use in low turbidity (<50 NTU) subalpine watersheds at Lake Tahoe, California,Nevada, USA. Continuous turbidity records for the 1999, 2000 and 2001 snowmelt seasons and data from water quality samples (1982,2000) were examined to determine watershed sediment delivery dynamics. Strong correlations were found between turbidity and both TSS and TP concentration. The strong correlation indicates that turbidity can serve as a good surrogate for direct measurement in these watersheds. The watersheds displayed clockwise hysteresis: sediment flushing and depletion, on daily, seasonal and decadal time-scales. The hysteresis curves had strong concave shapes, indicating a sensitive response to peak flow. A pronounced seasonal trend was observed for the ratio of suspended sediment concentration (SSC)/discharge over time, indicating early season flushing of available sediment. Significant linear relationships (p < 0·05) were found for 12 of 17 years. Comparison of annual sediment rating curve coefficients indicated smaller coefficients during high sediment loading years and in the years following. The smaller coefficients are evidence of sediment depletion during high flow years. The effect of hysteresis on monitoring methods was illustrated by comparing turbidity estimates of TSS load with sediment rating curve estimates of SSC. After accounting for differences in SSC/TSS methods of analysis, daily loads calculated with turbidity methods were 58,98% of rating curve estimates for the spring snowmelt seasons of 1999,2001. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The effect of truck traffic and road water content on sediment delivery from unpaved forest roads

HYDROLOGICAL PROCESSES, Issue 8 2006
Gary J. Sheridan
Abstract A study investigated the effect of truck-traffic intensity and road water-content on the quality of runoff water from unsealed forest roads. Three sections of a gravel-surfaced forest road were instrumented and exposed to low and high levels of truck traffic during wet winter conditions and dry summer conditions between July 2001 and December 2002. Rainfall, runoff, road moisture, and traffic were measured continuously, and suspended and bedload sediments were integrated measurements over 2-week site-service intervals. The median suspended sediment concentration from the three road segments under low truck-traffic conditions (less than nine return truck passes prior to a storm) was 269 mg l,1, increasing 2·7-fold to a median of 725 mg l,1 under high truck-traffic conditions (greater than or equal to nine return truck passes prior to a storm). These concentrations, and increases due to traffic, are substantially less than most previously reported values. When these data are expressed as modified universal soil loss equation (MUSLE) erodibility values K, accounting for differences in rainfall energy, site characteristics and runoff, high traffic resulted in a road surface that was four times more erodible than the same road under low traffic conditions. Using multiple regression, traffic explained 36% of the variation in MUSLE erodibility, whereas road water content was not significant in the model. There was little difference in the erodibility of the road when trafficked in low water-content compared with high water-content conditions (MUSLE K values of 0·0084 versus 0·0080 respectively). This study shows that, for a good quality well-maintained gravel forest road, the level of truck traffic affects the sediment concentration of water discharging from the road, whereas the water content of the road at the time of that traffic does not (note that traffic is not allowed during runoff events in Victoria). These conclusions are conditional upon the road being adequately maintained so that trafficking does not compromise the lateral drainage of the road profile. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Suspended sediment transport regime in a debris-flow gully on Vancouver Island, British Columbia

HYDROLOGICAL PROCESSES, Issue 4 2005
Craig J. Nistor
Abstract In debris-flow-prone channels, normal fluvial sediment transport occurs (nearly exclusively in suspended mode) between episodic debris-flow events. Observations of suspended sediment transport through a winter season in a steepland gully in logged terrain revealed two event types. When flows exceeded a threshold of 270 l s,1, events yielded significant quantities of sediment and suspended sediment concentration increased with flow. Smaller events were strongly ,supply limited'; sediment concentration decreased as flow increased. Overall, there is no consistent correlation between runoff and sediment yield. Within the season, three subseasons were identified (demarcated by periods of freezing weather) within which a pattern of fine sediment replenishment and evacuation occurred. Finally, a signature of fine sediment mobilization and exhaustion was observed within individual events. Fine sediment transport occurred in discrete pulses within storm periods, most of the yield occurring within 5 to 15% of storm runoff duration, so that it is unlikely that scheduled sampling programs would identify significant transport. Significant events are, however, generally forecastable on the basis of regional heavy rainfall warnings, providing a basis for targeted observations. Radiative snowmelt events and rain-on-snow remain difficult to forecast, since the projection of temperatures from the nearest regular weather station yields variable results. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Suspended sediment concentration and the ripple,dune transition

HYDROLOGICAL PROCESSES, Issue 17 2004
Robert J. Schindler
Abstract Flume experiments were conducted in order to monitor changes in flow turbulence intensity and suspended sediment concentration at seven stages across the ripple,dune transition and at three different positions above the bed surface. Three-dimensional velocity measurements were obtained using an acoustic Doppler velocimeter (ADV). Suspended sediment concentration (SSC) was monitored indirectly using ADV signal amplitude. Although limited to time-averaged parameters, the analysis reveals that SSC varies significantly with stage across the transition and with sampling height. The statistical analysis also reveals an apparent uniformity of suspended sediment concentration with height above the bed in the lower half of the flow depth at the critical stage in the transition from ripples to dunes. This is also the stage at which turbulence intensity is maximized. Statistically significant correlations were also observed between suspended sediment concentrations and root-mean-square values of vertical velocity fluctuations. These correlations reflect the various levels of shear-layer activity and the distinct turbulent flow regions across the transition. Conversely, time-averaged values of Reynolds shear stress exhibit a very weak relationship with suspended sediment concentrations. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Short-term spatial and temporal patterns of suspended sediment transfer in proglacial channels, small River Glacier, Canada

HYDROLOGICAL PROCESSES, Issue 9 2004
John F. Orwin
Abstract Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short-term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom-built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ,low' suspended sediment concentrations. ,Irregular' transfer patterns were generally associated with ,high' sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd. [source]


An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations,

HYDROLOGICAL PROCESSES, Issue 17 2003
Arthur J. Horowitz
Abstract In the absence of actual suspended sediment concentration (SSC) measurements, hydrologists have used sediment rating (sediment transport) curves to estimate (predict) SSCs for subsequent flux calculations. Various evaluations of the sediment rating-curve method were made using data from long-term, daily sediment-measuring sites within large (>1 000 000 km2), medium (<1 000 000 to >1000 km2), and small (<1000 km2) river basins in the USA and Europe relative to the estimation of suspended sediment fluxes. The evaluations address such issues as the accuracy of flux estimations for various levels of temporal resolution as well as the impact of sampling frequency on the magnitude of flux estimation errors. The sediment rating-curve method tends to underpredict high, and overpredict low SSCs. As such, the range of errors associated with concomitant flux estimates for relatively short time-frames (e.g. daily, weekly) are likely to be substantially larger than those associated with longer time-frames (e.g. quarterly, annually) because the over- and underpredictions do not have sufficient time to balance each other. Hence, when error limits must be kept under ±20%, temporal resolution probably should be limited to quarterly or greater. The evaluations indicate that over periods of 20 or more years, errors of <1% can be achieved using a single sediment rating curve based on data spanning the entire period. However, somewhat better estimates for the entire period, and markedly better annual estimates within the period, can be obtained if individual annual sediment rating curves are used instead. Relatively accurate (errors <±20%) annual suspended sediment fluxes can be obtained from hydrologically based monthly measurements/samples. For 5-year periods or longer, similar results can be obtained from measurements/samples collected once every 2 months. In either case, hydrologically based sampling, as opposed to calendar-based sampling is likely to limit the magnitude of flux estimation errors. Published in 2003 John Wiley & Sons, Ltd. [source]


Suspended sediment dynamics in a steep, glacier-fed mountain stream, Place Creek, Canada

HYDROLOGICAL PROCESSES, Issue 9 2003
G. Richards
Abstract This study examined suspended sediment concentration (SSC) during the ablation seasons of 2000 and 2001 in Place Creek, Canada, a steep, glacier-fed mountain stream. Comparison of stream flow in Place Creek with that in an adjacent, almost unglacierized catchment provided a rational basis for separating the ablation seasons into nival, nival,glacial, glacial and autumn recession subseasons. Distinct groupings of points in plots of electrical conductivity against discharge supported the validity of the subseasonal divisions in terms of varying hydrological conditions. Relationships between SSC and discharge (Q) varied between the two study seasons, and between subseasons. Hysteresis in the SSC,Q relationship was evident at both event and weekly time-scales. Some suspended sediment released from pro-glacial Place Lake (the source of Place Creek) appeared to be lost to channel storage at low flows, especially early in the ablation season, with re-entrainment at higher flows. Multiple regression models were derived for the subseasons using predictor variables including Q, Q2, the change in Q over the previous 3 h, cumulative discharge over the ablation season, total precipitation over the previous 24 h and SSC measured at 1500 hours as an index value for each day. The models produced adjusted R2 values ranging from 0·71 to 0·91, and provided tentative insights into the differences in SSC dynamics amongst subseasons. Introduction of the index value of SSC significantly improved the model fit during the nival,glacial and glacial subseasons for both years, as it adjusts the model to the current condition of sediment supply. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Erosion prediction on unpaved mountain roads in northern Thailand: validation of dynamic erodibility modelling using KINEROS2

HYDROLOGICAL PROCESSES, Issue 3 2001
Alan D. Ziegler
Abstract The event- and physics-based KINEROS2 runoff/erosion model for predicting overland flow generation and sediment production was applied to unpaved mountain roads. Field rainfall simulations conducted in northern Thailand provided independent data for model calibration and validation. Validation shows that KINEROS2 can be parameterized to simulate total discharge, sediment transport and sediment concentration on small-scale road plots, for a range of slopes, during simulated rainfall events. The KINEROS2 model, however, did not accurately predict time-dependent changes in sediment output and concentration. In particular, early flush peaks and the temporal decay in sediment output were not predicted, owing to the inability of KINEROS2 to model removal of a surface sediment layer of finite depth. After 15,20 min, sediment transport declines as the supply of loose superficial material becomes depleted. Modelled erosion response was improved by allowing road erodibility to vary during an event. Changing the model values of erosion detachment parameters in response to changes in surface sediment availability improved model accuracy of predicted sediment transport by 30,40%. A predictive relationship between road erodibility ,states' and road surface sediment depth is presented. This relationship allows implementation of the dynamic erodibility (DE) method to events where pre-storm sediment depth can be estimated (e.g., from traffic usage variables). Copyright © 2001 John Wiley & Sons, Ltd. [source]


RUNOFF AND SEDIMENT RESPONSES TO CONSERVATION PRACTICES: LOESS PLATEAU OF CHINA,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2003
Mingbin Huang
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration. [source]


Experiments on sediment trap efficiency in reservoirs

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2005
Horacio Toniolo
Abstract Sediment trap efficiency plays a key role in the effective operational life of reservoirs. This paper presents the results of five laboratory experiments on trap efficiency. An over-spilling condition and four gaps located at the downstream end of a reservoir were analysed in this study. The experimental design assumed a river carrying two phases of sediment flowing into a one-dimensional reservoir. The coarse sediment (sand) was deposited and formed a defined prograding delta. The fine sediment (mud) formed a dilute suspension of wash load in the river. As the river entered the reservoir, the muddy water plunged on the foreset, forming a turbidity current. The turbidity current deposits, in turn, formed a bottomset. Black coal slag and white glass beads were used to simulate sand and mud. Their specific densities were 2.6 and 2.5 for black coal and beads, respectively. The water surface elevation in the reservoir was approximately similar in all experiments. Neither the water nor sediment discharge conditions were changed during the experimental runs. Suspended sediment was sampled through seven siphons; six of these being components of a rake in which they were vertically stacked. The last siphon was positioned on the rake outlet. Sediment samples were taken three times, at approximately evenly spaced intervals in the experiments. Suspended sediment concentration and grain size distribution were calculated for each siphon. The bed sediment deposit was sampled after each experiment. Sediment trap efficiency in the reservoir was calculated. Experimental results show the maximum venting capacity (minimum trap efficiency) occurs under over-spilling conditions. [source]


The impact of cotton geotextiles on soil and water losses from Mediterranean rainfed agricultural land

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2010
A. Giménez-Morera
Abstract High soil erosion risk of Mediterranean cultivated soils is due to steep slopes, high rainfall intensities and low vegetation cover. Traditional land management as ploughing and herbicides give rise to high soil erosion rates. This paper reports on the use of a cotton geotextiles to control soil and water losses on agricultural land under Mediterranean climatic conditions. Eight paired plots (1, 2, 4 and 16,m2) were studied during 1-year period under natural rainfall. Forty rainfall simulations under wet and dry climatic conditions, and water drop penetration time (WDPT) tests, were carried out in order to analyze the effect of a geotextile on soil and water losses on a typical rainfed orchard in Eastern Spain. Results showed that an 8,mm thick cotton geotextile reduced soil loss to negligible values (from 14 to 0·1,Mg,ha,1,y,1) due to the low sediment concentration as geotextile covered 100% of the soil. However, infiltration rates decreased and runoff increased due to the hydrophobic response of the cotton material. The runoff discharge increased from 8% to 16% for the 2004 period under natural rainfall and from 27% to 87% under simulated rainfall when summer dry conditions were reached. The cotton geotextile reduced local soil losses at plot-scale, but increased runoff. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Effects of field reorganisation on the spatial variability of runoff and erosion rates in vineyards of Northeastern Spain

LAND DEGRADATION AND DEVELOPMENT, Issue 1 2010
M. C. Ramos
Abstract This study analyses the spatial variability of runoff and erosion rates in vineyards due to mechanisation works. Runoff samples were collected at three positions in two plots after 33 erosive events in three years (2001, 2003, 2004) with different rainfall patterns. Three replications were considered at each position. Soil properties were evaluated in order to analyse its relationship with runoff and erosion rates. Runoff and erosion rates were, on average, higher in the levelled plot (HD), ranging between 8·4 and 34·3 per cent, than in the non-levelled plot (LD) ranging between 8·2 and 24·1 per cent. Mean sediment concentration in runoff ranged between 6 and 8,g,L,1 in the HD plot and about 4·6,g,L,1 in the LD plot, but with high differences within the plot. In the HD plot, runoff-rainfall rates were significantly higher (at 95 per cent level) in the upper part of the slope and decreased along the slope, while in the LD plot, differences in runoff rates were not significant and similar to those observed in the less disturbed areas of the HD plot. The higher susceptibility to soil sealing in areas where the original topsoil was removed conditioned runoff rates. In the lower part of the HD plot runoff rates were, on average, 20 per cent lower than in the upper part of the slope. In those positions runoff rates up to 79 per cent were recorded. Organic matter content and water retention capacity at different potentials are the soil characteristics related to the differences on runoff and erosion rates in the resulting soils. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Simulated rainfall evaluation of revegetation/mulch erosion control in the Lake Tahoe Basin,1: method assessment

LAND DEGRADATION AND DEVELOPMENT, Issue 6 2004
M. E. Grismer
Abstract Revegetation of road cuts and fills is intended to stabilize those drastically disturbed areas so that sediment is not transported to adjacent waterways. Sediment has resulted in water quality degradation, an extremely critical issue in the Lake Tahoe Basin. Many revegetation efforts in this semiarid, subalpine environment have resulted in low levels of plant cover, thus failing to meet project goals. Further, no adequate physical method of assessing project effectiveness has been developed, relative to runoff or sediment movement. This paper describes the use of a portable rainfall simulator (RS) to conduct a preliminary assessment of the effectiveness of a variety of erosion-control treatments and treatment effects on hydrologic parameters and erosion. The particular goal of this paper is to determine whether the RS method can measure revegetation treatment effects on infiltration and erosion. The RS-plot studies were used to determine slope, cover (mulch and vegetation) and surface roughness effects on infiltration, runoff and erosion rates at several roadcuts across the basin. A rainfall rate of ,60,mm,h,1, approximating the 100-yr, 15-min design storm, was applied over replicated 0·64,m2 plots in each treatment type and over bare-soil plots for comparison. Simulated rainfall had a mean drop size of ,2·1,mm and approximately 70% of ,natural' kinetic energy. Measured parameters included time to runoff, infiltration, runoff/infiltration rate, sediment discharge rate and average sediment concentration as well as analysis of total Kjeldahl nitrogen (TKN) and dissolved phosphorus (TDP) from filtered (0·45,,m) runoff samples. Runoff rates, sediment concentrations and yields were greater from volcanic soils as compared to that from granitic soils for nearly all cover conditions. For example, bare soil sediment yields from volcanic soils ranged from 2,12 as compared to 0·3,3,g,m,2,mm,1 for granitic soils. Pine-needle mulch cover treatments substantially reduced sediment yields from all plots. Plot microtopography or roughness and cross-slope had no effect on sediment concentrations in runoff or sediment yield. RS measurements showed discernible differences in runoff, infiltration, and sediment yields between treatments. Runoff nutrient concentrations were not distinguishable from that in the rainwater used. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Rainfall variability and hydrological and erosive response of an olive tree microcatchment under no-tillage with a spontaneous grass cover in Spain

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2010
E. V. Taguas
Abstract Most studies on runoff and soil loss from olive orchards were performed on plots, despite the fact that measurements that examine a range of erosive processes on different scales are essential to evaluate the suitability of the use and soil management of this type of land. The main environmental limitations of much of the land used for olive orchards in the Mediterranean are the steep slopes and the shallow soil depth , and this was the case in the study area. Soil erosion and runoff over two hydrological years (2005,2006 and 2006,2007) were monitored in an olive orchard microcatchment of 6·1,ha under no-tillage with spontaneous grass in order to evaluate its hydrological and erosive behaviour. Moreover, soil parameters such as organic matter (%OM), bulk density (BD) and hydraulic saturated conductivity (Ks) were also examined in the microcatchment to describe management effects on hydrological balance and on erosive processes. In the study period, the results showed runoff coefficients of 6·0% in the first year and 0·9% in the second. The differences respond to the impact of two or three yearly maximum events which were decisive in the annual balances. On the event scale, although maximum rainfall intensity values had a big influence on peak flows and runoff, its importance on mean sediment concentrations and sediment discharges was difficult to interpret due to the likely control of grass cover on volume runoff and on soil protection. In the case of annual soil erosion, they were measured as 1·0,Mg,ha,1,yr,1 and 0·3,Mg,ha,1,yr,1. Both are lower than the tolerance values evaluated in Andalusia (Spain). These results support the implementation of no-tillage with spontaneous grass cover for sloping land, although the reduced infiltration conditions determined by Ks in the first horizon suggest grass should be allowed to grow not only in spring but also in autumn. In addition, specific measurements to control gullies, which have formed in the terraced area in the catchment, should be included since it is expected that they could be the main sources of sediments. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2008
Guan-Wei Lin
Abstract Patterns and rates of landsliding and fluvial sediment transfer in mountain catchments are determined by the strength and location of rain storms and earthquakes, and by the sequence in which they occur. To explore this notion, landslides caused by three tropical cyclones and a very large earthquake have been mapped in the Chenyoulan catchment in the Taiwan Central Range, where water and sediment discharges and rock strengths are well known. Prior to the MW 7·6 Chi-Chi earthquake in 1999, storm-driven landslide rates were modest. Landslides occurred primarily low within the landscape in shallow slopes, reworking older colluvial material. The Chi-Chi earthquake caused wide-spread landsliding in the steepest bedrock slopes high within the catchment due to topographic focusing of incoming seismic waves. After the earthquake landslide rates remained elevated, landslide patterns closely tracking the distribution of coseismic landslides. These patterns have not been strongly affected by rock strength. Sediment loads of the Chenyoulan River have been limited by supply from hillslopes. Prior to the Chi-Chi earthquake, the erosion budget was dominated by one exceptionally large flood, with anomalously high sediment concentrations, caused by typhoon Herb in 1996. Sediment concentrations were much higher than normal in intermediate size floods during the first 5 years after the earthquake, giving high sediment yields. In 2005, sediment concentrations had decreased to values prevalent before 1999. The hillslope response to the Chi-Chi earthquake has been much stronger than the five-fold increase of fluvial sediment loads and concentrations, but since the earthquake, hillslope sediment sources have become increasingly disconnected from the channel system, with 90 per cent of landslides not reaching into channels. Downslope advection of landslide debris associated with the Chi-Chi earthquake is driven by the impact of tropical cyclones, but occurs on a time-scale longer than this study. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Experimental study of rill bank collapse

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2007
Jovan R. Stefanovic
Abstract Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre-existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ,interrill' zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11,0·12 m and 0·06,0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd. [source]