Screen Printing (screen + printing)

Distribution by Scientific Domains


Selected Abstracts


Screen Printing to Achieve Highly Textured Bi4Ti3O12

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2010
Michael R. Winter
The focus of this paper is to explore the efficacy of screen printing to generate crystalline texture in bismuth titanate through the orientation of highly anisotropic seed crystals. Seed crystals were grown through a molten salt flux technique with aspect ratios of ,100:1, mixed with equiaxed powder of the same composition and oriented using screen printing, a high shear process. By printing on a flexible polymer substrate and using multiple print/dry cycles, it was possible to create pads with a thickness of several hundred micrometers and to remove the dried pads, creating free-standing samples. Upon sintering, the seed crystals grew at the expense of the matrix powder, a process known as templated grain growth. The degree of texture was analyzed using a variety of techniques including scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. [source]


Disposable Gold Electrode Array for Simultaneous Electrochemical Studies

ELECTROANALYSIS, Issue 1 2008
Graciela Priano
Abstract An efficient and inexpensive eight gold electrode array has been manufactured by a combination of screen printing and gold electrodeposition techniques. Gold electrodeposition was performed in potentiostatic and galvanostatic conditions. Different treatments, involving temperature and polishing control, led to electrodes with different roughness. The electrochemical behavior of the generated gold surface was studied by cyclic voltammetry showing the characteristic response of polycrystalline gold, in contrast with disposable gold electrodes fabricated by screen printing from gold inks. The electrodes were chemically modified through the adsorption of alkanethiols self-assembled monolayers and the coupling of a model protein. Both reactions were followed by cyclic voltammetry and Electrochemical Impedance Spectroscopy (EIS). The electrodes have shown high reproducibility in their electrochemical behavior as well as in their modifications. [source]


Fast High-Temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display

ADVANCED MATERIALS, Issue 35 2009
Peng Liu
Super aligned carbon nanotube (CNT) film shows a fast high-temperature response: the film can be heated to incandescence and cools down in about 1 ms. Using screen printing and laser cutting, an incandescent CNT film array that can dynamically display Chinese characters is fabricated. More applications of the film may be developed based on its fast response. [source]


Screen Printing to Achieve Highly Textured Bi4Ti3O12

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2010
Michael R. Winter
The focus of this paper is to explore the efficacy of screen printing to generate crystalline texture in bismuth titanate through the orientation of highly anisotropic seed crystals. Seed crystals were grown through a molten salt flux technique with aspect ratios of ,100:1, mixed with equiaxed powder of the same composition and oriented using screen printing, a high shear process. By printing on a flexible polymer substrate and using multiple print/dry cycles, it was possible to create pads with a thickness of several hundred micrometers and to remove the dried pads, creating free-standing samples. Upon sintering, the seed crystals grew at the expense of the matrix powder, a process known as templated grain growth. The degree of texture was analyzed using a variety of techniques including scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. [source]


Microwave Bandgap in Multilayer Ceramic Structures

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2006
Bo Li
A multilayer ceramic structure with a photonic bandgap (MC-PBG) was fabricated by a method of tape casting combined with screen printing. The MC-PBG structure is a two-dimensional array with either rectangular or hexagonal metal coils in a ceramic matrix. The metal coils are connected to the base metal layer in the ceramic substrate to form a monolithic body. The surface-wave dispersion properties of these MC-PBG structures were measured. A stop band, which is significantly influenced by the symmetrical characteristics of the inductor,capacitor (LC) arrays, was found in both the structures in the frequency range of 2.0,3.5 GHz. Because of their effective surface-wave suppression, MC-PBG structures can be used as high-performance antenna substrates to enhance the broadside gain of patch antenna devices. [source]


Magnetic properties of screen-printed (Y0.5Sm0.5)Co5 magnet arrays

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2007
D. Bueno-Baques
Abstract (Y0.5Sm0.5)Co5 magnet arrays of square ,dots of 300 ,m were prepared by screen printing. A well controlled paste like ink prepared with the (Y0.5Sm0.5)Co5 nanoparticles and a mixture of organic solvent and polymer was used to print different pattern arrays. (Y0.5Sm0.5)Co5 nanoparticles were obtained by mechanical milling starting from arc melted ingots and heat treated in Ar atmosphere. Two different heat treatment were considered, resulting in powders with different magnetic properties. The microstructure of the magnet arrays was studied by scanning electron microscopy (SEM). An isotropic homogeneous distribution of the nanoparticles inside the ,dots was observed. The final shape of the ,dots in the array was found to be highly dependent on the squeeze pressure and speed over the mesh. Magnetic properties were studied by pulsed field magnetometry and vibrating sample magnetometry at room temperature. The micro size arrays showed lower saturation magnetization and a slightly increase in the coercive field. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]