Scientific Drilling (scientific + drilling)

Distribution by Scientific Domains

Terms modified by Scientific Drilling

  • scientific drilling project

  • Selected Abstracts


    Zircon U,Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2007
    R.-X. CHEN
    Abstract A combined study of zircon morphology, U,Pb ages and Hf isotopes as well as whole-rock major and trace elements was carried out for ultrahigh-pressure (UHP) eclogite and felsic gneiss from the main hole (MH) of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The results show contrasting Hf isotope compositions for bimodal UHP metaigneous rocks, pointing to contrasting origins for their protoliths (thus dual-bimodal compositions). The samples of interest were from two continuous core segments from CCSD MH at depths of 734.21,737.16 m (I) and 929.67,932.86 m (II) respectively. Zircon U,Pb dating for four samples from the two core segments yields two groups of ages at 784 17 and 222 3 Ma, respectively, corresponding to protolith formation during supercontinental rifting and metamorphic growth during continental collision. Although the Triassic UHP metamorphism significantly reset the zircon U,Pb system of UHP rocks, the Hf isotope compositions of igneous zircon can be used to trace their protolith origin. Contrasting types of initial Hf isotope ratios are, respectively, correlated with segments I and II, regardless of their lithochemistry. The first type shows positive ,Hf(t) values of 7.8 3.1 to 6.0 3.0, with young Hf model age of 1.03 and 1.11 Ga. The second type exhibits negative ,Hf(t) values of ,6.9 1.6 to ,9.1 1.1, with old Hf model ages of 2.11 and 2.25 Ga. It appears that the UHP rocks from the two segments have protoliths of contrasting origin. Consistent results are also obtained from their trace element compositions suggesting that mid-Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting at the northern margin of the South China Block. Thus, the first type of bimodal magmatism formed by rapid reworking of juvenile crust, whereas the second type of bimodal magmatism was principally generated by rift anatexis of Paleoproterozoic crust. Melting of orogenic lithosphere has potential to bring about bimodal magmatism with contrasting origins. Because arc,continent collision zones are the best place to accumulate both juvenile and ancient crusts, the contrasting types of bimodal magmatism are proposed to occur in an arc,continent collision orogen during the supercontinental rifting, in response to the attempted breakup of the supercontinent Rodinia at c. 780 Ma. [source]


    Vp/Vs Anisotropy and Implications for Crustal Composition Identification and Earthquake Prediction

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
    Qian WANG
    Abstract: The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (,0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (,ij) that is significantly different from the value for its isotropic counterpart (,0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs,1.756 for felsic rocks, 1.7561.944 fluid-filled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation). [source]


    Real-time mud gas logging and sampling during drilling

    GEOFLUIDS (ELECTRONIC), Issue 3 2006
    J. ERZINGER
    Abstract Continuous mud gas loggings during drilling as well as offline mud gas sampling are standard procedures in oil and gas operations, where they are used to test reservoir rocks for hydrocarbons while drilling. Our research group has developed real-time mud gas monitoring techniques for scientific drilling in non-hydrocarbon formations mainly to sample and study the composition of crustal gases. We describe in detail this technique and provide examples for the evaluation of the continuous gas logs, which are not always easy to interpret. Hydrocarbons, helium, radon and with limitations carbon dioxide and hydrogen are the most suitable gases for the detection of fluid-bearing horizons, shear zones, open fractures, sections of enhanced permeability and permafrost methane hydrate occurrences. Off-site isotope studies on mud gas samples helped reveal the origin and evolution of deep-seated crustal fluids. [source]


    Eclogites from the Chinese continental scientific drilling borehole, their petrology and different P-T evolutions

    ISLAND ARC, Issue 4 2007
    Yong-Feng Zhu
    Abstract Four phengite-bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P-T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P-T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600C) to 1.3 GPa (ca 550C). Eclogite B310 yielded P-T conditions of 3.0 GPa and 750C. The path for eclogite B1008 starts at about 650C and 3.6,3.9 GPa (stage I) followed by a pressure decrease to 2.8,3.0 GPa and a significant temperature rise (stages II and IIIa, 750,810C). Afterwards, this rock cooled down to 620,660C at still high pressures (2.5,2.7 GPa, stage IIIb). Retrograde conditions were about 670C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P-T path starting at ca 600C and 3.3,3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590,610C) and then a moderate isobaric temperature increase to ca 630C (stage III) followed. Stage IV is characterized by temperatures of 650C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks. [source]