Schwann Cell Cultures (schwann + cell_culture)

Distribution by Scientific Domains

Selected Abstracts

Erythropoietin reduces Schwann cell TNF-,, Wallerian degeneration and pain-related behaviors after peripheral nerve injury

W. Marie Campana
Abstract Chronic sciatic nerve constriction injury (CCI) induces Wallerian degeneration and exaggerated pain-like behaviors. These effects are mediated in large part by pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-,). In this study, we demonstrate that systemically administered recombinant human erythropoietin (rhEpo) facilitates recovery from chronic neuropathic pain associated with CCI in rats. Because TNF-, has been implicated in the development of pain-related behaviors, we measured TNF-, mRNA at the nerve injury site. Systemically or locally administered rhEpo decreased TNF-, mRNA, compared with that observed in untreated animals. RhEpo also significantly (P < 0.05) decreased axonal degeneration. Immunohistochemistry of CCI nerve showed abundant TNF-, in Schwann cells, axoplasm and macrophages. In rhEpo-treated animals, TNF-, immunopositivity was decreased selectively in Schwann cells. These results suggest a model in which rhEpo counteracts the effects of TNF-, in CCI by blocking expression of TNF-, in Schwann cells. To further test this model, we studied primary Schwann cell cultures. RhEpo inhibited TNF-, expression in response to lipopolysaccharide, supporting the conclusions of our in vivo CCI experiments. In addition, rhEpo directly counteracted Schwann cell death induced by exogenously added TNF-,in vitro. These results indicated that rhEpo regulates TNF-, by multiple mechanisms; rhEpo regulates TNF-, mRNA expression by Schwann cells but also may directly counteract TNF-, signaling pathways that lead to injury, chronic pain and/or death. [source]

Altered arachidonic acid biosynthesis and antioxidant protection mechanisms in Schwann cells grown in elevated glucose

Cristinel Mîinea
Abstract In cultured Schwann cells, elevated glucose induces alterations in arachidonic acid metabolism that cause a decrease in the content of glycerophospholipid arachidonoyl-containing molecular species (ACMS). This could result from decreased de novo arachidonic acid biosynthesis, or increased arachidonic acid release from phospholipids. Incorporation of radioactive 8,11,14-eicosatrienoic acid into ACMS was lower for cells grown in 30 mm versus 5 mm glucose, consistent with a decrease in ,5 desaturase activity. However, neither basal arachidonic acid release from prelabeled cells nor stimulated generation of arachidonic acid in the presence of the reacylation inhibitor, thimerosal, the phosphotyrosine phosphatase inhibitor, bipyridyl peroxovanadium, or both together, were altered by varying the glucose concentrations, indicating that arachidonic acid turnover did not contribute to ACMS depletion. Free cytosolic NAD+/NADH decreased, whereas NADP+/NADPH remained unchanged for cells grown in elevated glucose, implying that decreased desaturase activity is a result of metabolic changes other than cofactor availability. Schwann cells in elevated glucose were susceptible to oxidative stress, as shown by increased malondialdehyde, depleted glutathione levels, and reduced cytosolic superoxide dismutase activity. Glutathione-altering compounds had no effect on ACMS levels, in contrast to N -acetylcysteine and ,-lipoic acid, which partly corrected ACMS depletion in phosphatidylcholine. These findings suggest that in the Schwann cell cultures, a high glucose level elicits oxidative stress and weakens antioxidant protection mechanisms which could decrease arachidonic acid biosynthesis and that this deficit can be partly corrected by treatment with exogenous antioxidants. [source]

In vitro studies of steroid hormones in neurofibromatosis 1 tumors and schwann cells

Lauren Fishbein
Abstract The most common NF1 feature is the benign neurofibroma, which consists predominantly of Schwann cells. Dermal neurofibromas usually arise during puberty and increase in number throughout adulthood. Plexiform neurofibromas, associated with larger nerves, are often congenital and can be life threatening. Malignant peripheral nerve sheath tumors (MPNST) in NF1 are believed to arise from plexiforms in 5%,10% of patients. There are reports of increased potential for malignant transformation of plexiform tumors and increase in dermal neurofibromas, during pregnancy. These observations suggest that steroid hormones influence neurofibroma growth, and our work is the first to examine steroid hormone receptor expression and ligand-mediated cell growth and survival in normal human Schwann cells and neurofibroma-derived Schwann cell cultures. Immunohistochemistry and real-time PCR showed that estrogen receptors (ERs), progesterone receptor (PR), and androgen receptor are differentially expressed in primary neurofibromas and in NF1 tumor-derived Schwann cell cultures compared to normal Schwann cells. However, there is substantial heterogeneity, with no clear divisions based on tumor type or gender. The in vitro effects of steroid hormone receptor ligands on proliferation and apoptosis of early passage NF1 tumor-derived Schwann cell cultures were compared to normal Schwann cell cultures. Some statistically significant changes in proliferation and apoptosis were found, also showing heterogeneity across groups and ligands. Overall, the changes are consistent with increased cell accumulation. Our data suggest that steroid hormones can directly influence neurofibroma initiation or progression by acting through their cognate receptor, but that these effects may only apply to a subset of tumors, in either gender. © 2007 Wiley-Liss, Inc. [source]