Home About us Contact | |||
Avoiding Predators (avoiding + predator)
Selected AbstractsAvoiding predators at night: antipredator strategies in red-tailed sportive lemurs (Lepilemur ruficaudatus)AMERICAN JOURNAL OF PRIMATOLOGY, Issue 6 2007Claudia Fichtel Abstract Although about one-third of all primate species are nocturnal, their antipredator behavior has rarely been studied directly. Crypsis and a solitary lifestyle have traditionally been considered to be the main adaptive antipredator strategies of nocturnal primates. However, a number of recent studies have revealed that nocturnal primates are not as cryptic and solitary as previously suggested. Thus, the antipredator strategies available for diurnal primates that rely on early detection and warning of approaching predators may also be available to nocturnal species. In order to shed additional light on the antipredator strategies of nocturnal primates, I studied pair-living red-tailed sportive lemurs (Lepilemur ruficaudatus) in Western Madagascar. In an experimental field study I exposed adult sportive lemurs that lived in pairs and had offspring to playbacks of vocalizations of their main aerial and terrestrial predators, as well as to their own mobbing calls (barks) given in response to disturbances at their tree holes. I documented the subjects' immediate behavioral responses, including alarm calls, during the first minute following a playback. The sportive lemurs did not give alarm calls in response to predator call playbacks or to playbacks with barks. Other behavioral responses, such as gaze and escape directions, corresponded to the hunting strategies of the two classes of predators, suggesting that the corresponding vocalizations were correctly categorized. In response to barks, they scanned the ground and fled. Because barks do not indicate any specific threats, they are presumably general alarm calls. Thus, sportive lemurs do not rely on early warning of acoustically simulated predators; rather, they show adaptive escape strategies and use general alarm calls that are primarily directed toward the predator but may also serve to warn kin and pair-partners. Am. J. Primatol. 69:611,624, 2007. © 2007 Wiley-Liss, Inc. [source] The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lakeFRESHWATER BIOLOGY, Issue 10 2010MARÍA de los ÁNGELES GONZÁLEZ SAGRARIO Summary 1.,The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2.,We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3.,Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4.,Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large-bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5.,Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top-down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants. [source] How starvation risk in Redshanks Tringa totanus results in predation mortality from Sparrowhawks Accipiter nisusIBIS, Issue 2008WILL CRESSWELL Redshanks Tringa totanus that are preyed upon by Sparrowhawks Accipiter nisus at the Tyninghame Estuary, Firth of Forth, Scotland, provide an example of how the starvation,predation risk trade-off results in mortality. In this trade-off, animals cannot always optimize anti-predation behaviour because anti-predation behaviours, such as avoiding predators, are usually incompatible with foraging behaviours that might maximize intake rates. Therefore, as animals compensate for starvation risk, predation risk increases. Sparrowhawks are the main direct cause of death in Redshanks at Tyninghame. Sparrowhawk attack rate is determined by Redshank vulnerability, and vulnerability decreases as group size and distance to cover increase, and probably as spacing decreases. But reduction of predation vulnerability reduces feeding rate because areas away from cover are less food-profitable and grouping results in increased interference competition. Increased starvation risk in midwinter means Redshanks are forced to feed on highly profitable prey, Orchestia amphipods, the behaviour of which means that Redshanks are forced to feed vulnerably, in widely spaced groups, close to predator-concealing cover. Therefore, it is the constraints that limit the ability of Redshanks to feed in large, dense flocks away from cover that ultimately lead to mortality. We investigate this hypothesis further by testing the prediction that mortality can be predicted directly by cold weather and population density. We demonstrate that the overall number of Redshanks and the proportion of Redshanks killed increase in cold months when controlling for population size. We also demonstrate that the proportion of Redshanks killed increases when there are fewer Redshanks present, because the success rate of hunting Sparrowhawks increases, probably because effective management of predation risk through flocking is constrained by a low population size. Redshanks therefore provide an example of how directly mortality caused by predation arises from starvation risk and other constraints that prevent animals from optimizing anti-predation behaviour. [source] Are there interactive effects of mate availability and predation risk on life history and defence in a simultaneous hermaphrodite?JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2008J. R. AULD Abstract Encountering mates and avoiding predators are ubiquitous challenges faced by many organisms and they can affect the expression of many traits including growth, timing of maturity and resource allocation to reproduction. However, these two factors are commonly considered in isolation rather than simultaneously. We examined whether predation risk and mate availability interact to affect morphology and life-history traits (including lifetime fecundity) of a hermaphroditic snail (Physa acuta). We found that mate availability reduced juvenile growth rate and final size. Predator cues from crayfish induced delayed reproduction, but there were no reduced fecundity costs associated with predator induction. Although there were interactive effects on longevity, lifetime fecundity was determined by the number of reproductive days. Therefore, our results indicate a resource-allocation trade-off among growth, longevity and reproduction. Future consideration of this interaction will be important for understanding how resource-allocation plasticity affects the integration of defensive, life-history and mating-system traits. [source] |