Home About us Contact | |||
Average Wind Speed (average + wind_speed)
Selected AbstractsThe effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina FasoEARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2007J. K. Leenders Abstract Soil loss caused by wind erosion is a widespread phenomenon in the Sahelian zone of West Africa. According to Sahelian farmers, scattered vegetation standing in amongst the crop has the potential for a wind erosion control strategy. This study was conducted to study the effect of single vegetation elements on the pattern of average wind speed and sediment transport. This was done by two experiments that were carried out during the rainy seasons of 2002 and 2003 in north Burkina Faso, West Africa. Wind speeds were measured using three sonic anemometers, at a sampling frequency of 16 Hz. Sediment transport was determined by calculating the mass fluxes from 17 MWAC catchers. In this study, a shrub was defined as a vegetation element with branches until ground and a tree as a vegetation element with a distinctive trunk below a canopy. Behind shrubs wind speed near the soil surface was reduced up to approximately seven times the height of the shrub. The observed reduction in wind speed in the area where wind speed was reduced was 15 per cent on average. At the sides of the shrub, wind speed was increased, by on average 6 per cent. As the area of increase in wind speed is one-third of the area of decrease in wind speed, the net effect of a shrub is a reduction in wind speed. A similar pattern was visible for the pattern of sediment transport around a shrub. Downwind of a shrub, sediment transport was diminished up to seven times the height of the shrub. Probably most of this material was trapped by the shrub. Trees showed a local increase of wind around the trunk, which is expected to relate to an increase in sediment transport around the trunk. Mass flux measurements of sediment transport were not made, but visual observations in the field substantiate this. Behind the canopy of a tree, a tree acts similarly to a shrub regarding its effects on average wind speed, but as a tree is generally a larger obstacle than a shrub the extent of this effect is larger than for shrubs. Thus, whereas shrubs are more effective than trees regarding their direct effect on soil loss by trapping sand particles near the soil surface, trees are more effective in affecting soil loss indirectly by reducing the wind speed downwind more effectively than shrubs. Therefore, to reduce soil loss in an area, the presence of both trees and shrubs is crucial. Copyright © 2007 John Wiley & Sons, Ltd. [source] Wind speed measurements and forest damage in Canton Zurich (Central Europe) from 1891 to winter 2007INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2010Tilo Usbeck Abstract The most severe damage to forests in central Europe occurs during winter storms that are caused by Northern Hemispheric mid-latitude cyclones. These winter storms have caused several catastrophic windthrows during the past four decades. Amounts of forest storm damage are believed to be a function of both the size of the forest and the storm intensity. To test this hypothesis, the Zurich region (city and canton) was chosen because long-term climate observation data is available for the region. The relationships between forest attributes, wind speed and forest damage were explored by comparing data on forests and wind speed from 107 winters with forest damage. Storm damage was defined as the proportion of damaged forests with respect to the growing stock. The variables: daily wind run (91 years), daily maximum hourly average wind speed (107 years) and peak gust wind speed (74 years) were homogenized with respect to high wind speed and related to levels of forest damage. High maximum wind speed at the end of the 19th century and at the beginning of the 20th century was followed by low maximum wind speed in the 1940s, 1960s and 1970s. Since then, maximum values have increased. Gusts (extremes of the maximum wind speed) increased from the beginning of the recordings in 1933 and peaked in the early 1990s. Forest damage due to winter storms is best correlated with peak wind speed. Gusts exceeding 40 m/s and resulting in catastrophic windthrow have increased in recent winters. Copyright © 2009 Royal Meteorological Society [source] Using a Geographic Information System to identify areas with potential for off-target pesticide exposureENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006Thomas G. Pfleeger Abstract In many countries, numerous tests are required as part of the risk assessment process before chemical registration to protect human health and the environment from unintended effects of chemical releases. Most of these tests are not based on ecological or environmental relevance but, rather, on consistent performance in the laboratory. A conceptual approach based on Geographic Information System (GIS) technology has been developed to identify areas that are vulnerable to nontarget chemical exposure. This GIS-based approach uses wind speed, frequency of those winds, pesticide application rates, and spatial location of agricultural crops to identify areas with the highest potential for pesticide exposure. A test scenario based on an incident in Idaho (USA) was used to identify the relative magnitude of risk from off-target movement of herbicides to plants in the conterminous United States. This analysis indicated that the western portion of the Corn Belt, the central California valley, southeastern Washington, the Willamette Valley of Oregon, and agricultural areas bordering the Great Lakes are among those areas in the United States that appear to have the greatest potential for off-target movement of herbicides via drift. Agricultural areas, such as the Mississippi River Valley and the southeastern United States, appears to have less potential, possibly due to lower average wind speeds. Ecological risk assessments developed for pesticide registration would be improved by using response data from species common to high-risk areas instead of extrapolating test data from species unrelated to those areas with the highest potential for exposure. [source] Determination of Weibull parameters for wind energy analysis of ,zmir, TurkeyINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2002K. Ulgen Abstract In this study, the two Weibull parameters of the wind speed distribution function, the shape parameter k (dimensionless) and the scale parameter c (ms,1), were computed from the wind speed data for ,zmir. Wind data, consisting of hourly wind speed records over a 5-year period, 1995,1999, were measured in the Solar/Wind-Meteorological Station of the Solar Energy Institute at Ege University. Based on the experimental data, it was found that the numerical values of both Weibull parameters (k and c) for ,zmir vary over a wide range. The yearly values of k range from 1.378 to 1.634 with a mean value of 1.552, while those of c are in the range of 2.956,3.444 with a mean value of 3.222. The average seasonal Weibull distributions for ,zmir are also given. The wind speed distributions are represented by Weibull distribution and also by Rayleigh distribution, with a special case of the Weibull distribution for k=2. As a result, the Weibull distribution is found to be suitable to represent the actual probability of wind speed data for ,zmir (at annual average wind speeds up to 3 ms,1). Copyright © 2002 John Wiley & Sons, Ltd. [source] |