Average Spacing (average + spacing)

Distribution by Scientific Domains


Selected Abstracts


Interaction between a dislocation and monovalent anion in various alkali halide crystals

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2010
Y. KohzukiArticle first published online: 30 AUG 2010
Abstract It was investigated from (L0/L)2 versus ,0 curve that the Friedel relation between the effective stress and the average length of dislocation segments, L, is appropriate for the interaction between a dislocation and the monovalent anion in various alkali halides single crystals (NaCl: Br - , NaBr: Cl - or I - , KCl: Br - or I - , and RbCl: Br - or I - ). Here, L0 represents the average spacing of monovalent anions on a slip plane and ,0 is the bending angle at which the dislocation breaks away from the anion at the temperature of 0 K. This is because the anions are the weak obstacles such as impede the dislocation at ,0 above about 150 degrees, where the Friedel relation agrees with the Fleischer one (L02 = L2(,,,0)/2). Furthermore, the values of (L /L0) were found to be within 4.05 to 5.87 for the crystals. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Random controls on semi-rhythmic spacing of pools and riffles in constriction-dominated rivers

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2001
Douglas M. Thompson
Abstract Average pool spacing between five and seven bankfull widths has been documented in environments throughout the world, but has limited theoretical justification in coarse-bedded and bedrock environments. Pool formation in coarse-bedded and bedrock channels has been attributed to bedrock and boulder constrictions. Because the spacing of these constrictions may be irregular in nature, it is difficult to reconcile pool-formation processes with the supposedly rhythmic spacing of pools and riffles. To address these issues, a simulation model for pool and riffle formation is used to demonstrate that semi-rhythmic spacing of pools with an approximate spacing of five to seven bankfull widths can be recreated from a random distribution of obstructions and minimum pool- and riffle-length criteria. It is assumed that a pool,riffle couplet will achieve a minimum length based on dominant-discharge conditions. Values for the minimum-length assumption are based on field data collected in New England and California, while the theoretical basis relies on the demonstrated hydraulic response of individual pools to elongation. Results from the simulations show that the location of pools can be primarily random in character, but still assume an average spacing between four and eight bankfull widths for a variety of conditions. Field verification data generally support the model but highlight a highly skewed distribution of pool-forming elements and pool spacing. The relation between pool spacing and bankfull widths is attributed to the common geometric response of these features to dominant-discharge conditions. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Simple modifications for stabilization of the finite point method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2005
B. Boroomand
Abstract A stabilized version of the finite point method (FPM) is presented. A source of instability due to the evaluation of the base function using a least square procedure is discussed. A suitable mapping is proposed and employed to eliminate the ill-conditioning effect due to directional arrangement of the points. A step by step algorithm is given for finding the local rotated axes and the dimensions of the cloud using local average spacing and inertia moments of the points distribution. It is shown that the conventional version of FPM may lead to wrong results when the proposed mapping algorithm is not used. It is shown that another source for instability and non-monotonic convergence rate in collocation methods lies in the treatment of Neumann boundary conditions. Unlike the conventional FPM, in this work the Neumann boundary conditions and the equilibrium equations appear simultaneously in a weight equation similar to that of weighted residual methods. The stabilization procedure may be considered as an interpretation of the finite calculus (FIC) method. The main difference between the two stabilization procedures lies in choosing the characteristic length in FIC and the weight of the boundary residual in the proposed method. The new approach also provides a unique definition for the sign of the stabilization terms. The reasons for using stabilization terms only at the boundaries is discussed and the two methods are compared. Several numerical examples are presented to demonstrate the performance and convergence of the proposed methods. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 6 2003
H. Geldermann
Summary Three informative pig F2 families based on European Wild Boar (W), Meishan (M) and Pietrain (P) crosses have been used for genome-wide linkage and quantitative trait loci (QTL) analysis. Altogether 129 microsatellites, 56 type I loci and 46 trait definitions (specific to growth, fattening, fat deposition, muscling, meat quality, stress resistance and body conformation) were included in the study. In the linkage maps of M × P, W × P and W × M families, average spacing of markers were 18.4, 19.7 and 18.8 cM, the numbers of informative meioses were 582, 534 and 625, and the total lengths of autosomes measured were 27.3, 26.0 and 26.2 Morgan units, respectively. Maternal maps were on average 1.3 times longer than paternal maps. QTLs contributing more than 3% of F2 phenotypic variance could be identified at p < 0.05 chromosome-wide level. Differences in the numbers and positions of QTLs were observed between families. Genome-wide significant QTL effects were mapped for growth and fattening traits on eight chromosomes (1, 2, 4, 13, 14, 17, 18 and X), for fat deposition traits on seven chromosomes (1, 2, 3, 4, 6, 7 and X), for muscling traits on 11 chromosomes (1, 2, 3, 4, 6, 7, 8, 12, 14, 15 and X), for meat quality and stress resistance traits on seven chromosomes (2, 3, 6, 13, 16, 18 and X), and QTLs for body-conformation traits were detected on 14 chromosomes. Closely correlated traits showed similar QTL profiles within families. Major QTL effects for meat quality and stress resistance traits were found on SSC6 in the interval RYR1-A1BG in the W × P and M × P families, and could be attributed to segregation of the RYR1 allele T derived from Pietrain, whereas no effect in the corresponding SSC6 interval was found in family W × M, where Wild Boar and Meishan both contributed the RYR1 allele C. QTL positions were mostly similar in two of the three families for body conformation traits and for growth, fattening, fat deposition and muscling traits, especially on SSC4 (interval SW1073-NGFB). QTLs with large effects were also mapped on SSC7 in the major histocompatibility complex (MHC) (interval CYP21A2-S0102) and affected body length, weight of head and many other traits. The identification of DNA variants in genes causative for the QTLs requires further fine mapping of QTL intervals and a positional cloning. However, for these subsequent steps, the genome-wide QTL mapping in F2 families represents an essential starting point and is therefore significant for animal breeding. Zusammenfassung Drei informative F2 -Familien, die aus Kreuzungen von Europäischem Wildschwein (W), Meishan (M) und Pietrain (P) erstellt worden waren, wurden für eine genomweite Kopplungs- und QTL-Analyse benutzt. Insgesamt wurden 129 Mikrosatellitenloci, 56 Type-I-Loci und 46 Merkmalsdefinitionen (für Wachstum, Mastleistung, Fettansatz, Bemuskelung, Fleischqualität, Stressresistenz und Körperform) in die Untersuchungen einbezogen. In den Kopplungskarten der Familien M × P, W × P und W × M wurden durchschnittliche Markerabstände von 18.4, 19.7 bzw. 18.8 cM erreicht und 582, 534 bzw. 625 informative Meiosen beobachtet. Für die Gesamtlängen der Autosomen wurden in den drei Familien 27.3, 26.0 bzw. 26.2 Morgan-Einheiten gemessen. Die maternalen Kopplungskarten waren durchschnittlich 1.3-fach länger als die paternalen. QTLs, die mehr als 3% der phänotypischen Varianz in der F2 -Generation erklärten, konnten mit p < 0.05 chromosomenweitem Signifikanzniveau nachgewiesen werden. Zwischen den Familien wurden Differenzen in den Anzahlen und Positionen der QTLs beobachtet. Genomweit signifikante QTL-Effekte wurden für Wachstum und Fettansatz auf acht Chromosomen (1, 2, 4, 13, 14, 17, 18 und X) kartiert, für Fettansatz auf sieben Chromosomen (1, 2, 3, 4, 6, 7 und X), für Bemuskelung auf elf Chromosomen (1, 2, 3, 4, 6, 7, 8, 12, 14, 15 und X), für Fleischqualität/Stressresistenz auf sieben Chromosomen (2, 3, 6, 13, 16, 18 und X), und QTLs für die Körperform wurden auf 14 Chromosomen kartiert. Eng korrelierte Merkmale zeigten ähnliche QTL-Profile innerhalb Familien. Die bedeutsamsten QTL-Effekte wurden für Fleischqualitäts- und Stressresistenzmerkmale auf Chromosom 6, Intervall RYR1-A1BG, in den Familien W × P und M × P gefunden, während in diesem Chromosomenintervall in der Familie W × M, in der der RYR1 -Locus keine segregierenden Exon-Allele aufwies, kein QTL zu erkennen war. Mehrere der QTL-Positionen waren für die Körperform wie auch für Wachstum, Mastleistung, Fettansatz und Bemuskelung in zwei von drei Familien ähnlich. Dies galt besonders für Chromosom 4 (Intervall SW1073-NGFB). QTLs mit großen Effekten wurden auf Chromosom 7 im MHC (Intervall CYP21A2-S0102) kartiert; sie beeinflussten Körperlänge, Kopfgewicht, aber auch viele weitere Merkmale. Zur Identifizierung der DNA-Varianten, die einem QTL zugrunde liegen, ist eine Feinkartierung von QTLs und positionale Klonierung erforderlich. Für diese nachfolgenden Untersuchungsmethoden ist jedoch die genomweite QTL-Kartierung in F2 -Familien ein entscheidender Ausgangspunkt; sie ist deshalb bedeutungsvoll für die Tierzüchtung. [source]


RECIRCULATING WELLS: GROUND WATER REMEDIATION AND PROTECTION OF SURFACE WATER RESOURCES,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2000
Keith W. Ryan
ABSTRACT: Several chlorinated solvent plumes threaten the sole-source aquifer underlying the Massachusetts Military Reservation at the western end of Cape Cod. Sensitive surface water features including ponds, cranberry bogs, and coastal wetlands are hydraulically connected to the aquifer. For one of the plumes (CS-10 the original remedy of 120 extraction and reinjection wells has the potential for significant disruption of surface water hydrology, through the localized drawdown and mounding of the water table. Recirculating wells with in-well air stripping offer a cost-effective alternative to conventional pump-and-treat technology that does not adversely affect the configuration of the water table. Pilot testing of a two well system, pumping 300 gpm, showed a capture radius of > 200 feet per well, in-well trichloroethylene (TCE) removal efficiencies of 92 to 98 percent per recirculation cycle, an average of three recirculation cycles within the capture zone, and no measurable effect on water table elevations at any point within the recirculation/treatment zone. During 120 days of operation, the mean concentration of TCE in the treatment zone was reduced by 83 percent, from 1,111 ,g/l to 184 ,g/l. Full-scale design projections indicate that 60 wells at an average spacing of 160 feet, having an aggregate recirculation 11 MGD, can contain the CS-b plume without ground water extraction or adverse hydraulic effects on surface water resources. The estimated capital costs for such a system are about $7 million, and annual operations-and-maintenance costs should be about $1.4 million, 40 percent of those associated with a pump and treat system over a 20-year period. [source]


Electrospun poly(L -lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering,

POLYMER INTERNATIONAL, Issue 2 2010
Boontharika Chuenjitkuntaworn
Abstract Poly(L -lactic acid) (PLLA) is one of the most studied synthetic biodegradable polymeric materials as a bone graft substitute. Taking into account the osteoconductive property of hydroxyapatite (HAp), we prepared fibrous matrices of PLLA without and with HAp particles in amounts of 0.25 or 0.50% (w/v, based on the volume of the base 15% w/v PLLA solution in 70:30 v/v dichloromethane/tetrahydrofuran). These fibrous matrices were assessed for their potential as substrates for bone cell culture. The presence of HAp in the composite fibre mats was confirmed using energy dispersive X-ray spectroscopy mapping. The average diameters of both neat PLLA and PLLA/HAp fibres, as determined using scanning electron microscopy, ranged between 2.3 and 3.5 µm, with the average spacing between adjacent fibres ranging between 5.7 and 8.5 µm. The porosity of these fibrous membranes was high (ca 97,98%). A direct cytotoxicity evaluation with L929 mouse fibroblasts indicated that the neat PLLA fibre mats released no substance at a level that was toxic to the cells. The presence of HAp particles at 0.50% w/v in the PLLA fibrous scaffolds not only promoted the attachment and the proliferation of MC3T3-E1 mouse pre-osteoblastic cells, but also increased the expression of osteocalcin mRNA and the extent of mineralization after the cells had been cultured on the scaffolds for 14 and 21 days, respectively. The results obtained suggested that the PLLA/HAp fibre mats could be materials of choice for bone tissue engineering. Copyright © 2009 Society of Chemical Industry [source]


Layered silicate/epoxy nanocomposites: synthesis, characterization and properties

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2004
Nehal A. Salahuddin
Abstract Novel epoxy-clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T-403), primary polyethertriamine (Jeffamine T-5000) and three types of polyoxypropylene diamine (Jeffamine D-230, D-400, D-2000) with different molecular weight were used to treat Na-montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X-ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine-MMT intercalates. Jeffamine D-230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy-clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000-MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5,nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140,nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three-fold increase in the energy required for breaking the test specimen was found for T5000-MMT/epoxy containing 7,wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Universality and variability in basin outlet spacing: implications for the two-dimensional form of drainage basins

BASIN RESEARCH, Issue 2 2009
Rachel C. Walcott
ABSTRACT It has been observed that the distance between the outlets of transverse basins in orogens is typically half of the distance between the main divide and the range front irrespective of mountain range size or erosional controls. Although it has been suggested that this relationship is the inherent expression of Hack's law, and/or possibly a function of range widening, there are cases of notable deviations from the typical half-width average spacing. Moreover, it has not been demonstrated that this general relationship is also true for basins in morphologically similar nonorogenic settings, or for those that do not extend to the main drainage divide. These issues are explored by investigating the relationship between basin outlet spacing and the 2-dimensional geometric properties of drainage basins (basin length, main valley length and basin area) in order to assess whether the basin outlet spacing-range width ratio is a universal characteristic of fluvial systems. We examined basins spanning two orders of magnitude in area along the southern flank of the Himalayas and the coastal zone of southeast Africa. We found that the spacing between basin outlets (Los) for major transverse basins that drain the main divide (range-scale basins) is approximately half of the basin length (Lb) for all basins, irrespective of size, in southeast Africa. In the Himalayas, while this ratio was observed for eastern Himalayan basins (a region where the maximum elevations coincided with the main drainage divide), it was only observed in basins shorter than ,30 km in the western and central Himalayas. Our analysis indicates that basin outlet spacing is consistent with Hack's law, apparently because the increase in basin width (represented by outlet spacing) with basin area occurs at a rate similar to the increase in main stream length (Lv) with basin area. It is suggested that most river systems tend towards an approximately diamond-shaped packing arrangement, and this applies both to the nonorogenic setting of southeast Africa as well as most orogenic settings. However, in the western Himalayas shortening associated with localised rock uplift appears to have occurred at length scales smaller than most the basins examined. As a result rivers in basins longer than ,30 km have been unable to erode in a direction normal to the range front at a sufficiently high rate to sustain this form and have been forced into an alternative, and possibly unstable, packing arrangement. [source]


A genome scan of 18 families with chronic lymphocytic leukaemia

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2003
Lynn R. Goldin
Summary. Chronic lymphocytic leukaemia (CLL) accounts for about 30% of all leukaemias and is most prevalent in older individuals. Significant familial aggregation has been demonstrated but the mode of inheritance is unknown. Recurrent cytogenetic abnormalities are frequently found in CLL tumour cells but no susceptibility genes have been confirmed. We have collected clinical data and biospecimens on families ascertained for having at least two living patients with CLL. The current study included DNA samples from 94 individuals (38 affected patients) in 18 families. We have carried out a genome scan using the ABI 28-panel medium density linkage mapping set (average spacing of 10 cM and average heterozygosity of 80%). Genotypes for 359 markers were scored. Multipoint limit of detection (lod) scores were calculated, assuming both dominant and recessive inheritance and allowing for increased penetrance with age and genetic heterogeneity. Non-parametric linkage scores were also calculated. Lod scores of 1·0 or greater were found on regions of chromosomes 1, 3, 6, 12, 13 and 17, but none of these loci achieved statistical significance. Four of these six regions (6q, 13q, 12 and 17p) coincide with areas where cytogenetic abnormalities are frequently observed in CLL tumour cells and are, therefore, strong candidate regions for containing germ line changes. [source]