Avenues

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Avenues

  • additional avenue
  • future avenue
  • future research avenue
  • important avenue
  • new avenue
  • novel avenue
  • possible avenue
  • potential avenue
  • promising avenue
  • research avenue
  • several avenue
  • therapeutic avenue


  • Selected Abstracts


    View planning and automated data acquisition for three-dimensional modeling of complex sites

    JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 11-12 2009
    Paul S. Blaer
    Constructing highly detailed three-dimensional (3-D) models of large complex sites using range scanners can be a time-consuming manual process. One of the main drawbacks is determining where to place the scanner to obtain complete coverage of a site. We have developed a system for automatic view planning called VuePlan. When combined with our mobile robot, AVENUE, we have a system that is capable of modeling large-scale environments with minimal human intervention throughout both the planning and acquisition phases. The system proceeds in two distinct stages. In the initial phase, the system is given a two-dimensional site footprint with which it plans a minimal set of sufficient and properly constrained covering views. We then use a 3-D laser scanner to take scans at each of these views. When this planning system is combined with our mobile robot it automatically computes and executes a tour of these viewing locations and acquires them with the robot's onboard laser scanner. These initial scans serve as an approximate 3-D model of the site. The planning software then enters a second phase in which it updates this model by using a voxel-based occupancy procedure to plan the next best view (NBV). This NBV is acquired, and further NBVs are sequentially computed and acquired until an accurate and complete 3-D model is obtained. A simulator tool that we developed has allowed us to test our entire view planning algorithm on simulated sites. We have also successfully used our two-phase system to construct precise 3-D models of real-world sites located in New York City: Uris Hall on the campus of Columbia University and Fort Jay on Governors Island. © 2009 Wiley Periodicals, Inc. [source]


    Construction of a permeable reactive barrier in a residential neighborhood

    REMEDIATION, Issue 4 2002
    Peter Richards
    In June 2001, the Massachusetts Department of Environmental Protection (DEP) installed a permeable reactive barrier (PRB) within a roadway in Needham, Massachusetts, to treat a plume of chlorinated solvents migrating toward two public water-supply wells located in the adjacent town of Wellesley, Massachusetts. The solvents originated from an electronics manufacturer located approximately 2,300 feet upgradient of the roadway and 5,200 feet upgradient of the public supply wells. Chlorinated solvents, primarily trichloroethene (TCE), had migrated past the roadway to within 300 feet of the public supply wells. Two contaminant transport models prepared by the DEP's design contractor and the EPA indicated that the plume would reach the well field if no response actions were taken. To mitigate the future impact to the municipal well field, the DEP decided to install a PRB composed of zero-valent granular iron across the path of the plume along Central Avenue in Needham. Though several dozen PRBs have been installed at sites worldwide and the technology is no longer considered innovative, the application of the technology in a roadway that receives 17,000 vehicles per day within a residential neighborhood is unique and presented difficulties not typically associated with PRB installations. The Needham PRB was also one of the first zero-valent iron PRBs installed using the slurry trench method to treat chlorinated compounds. © 2002 Wiley Periodicals, Inc. [source]


    Front and Back Covers, Volume 23, Number 4.

    ANTHROPOLOGY TODAY, Issue 4 2007
    August 200
    Front and back cover caption, volume 23 issue 4 COMMEMORATING THE ,POLISH POPE' The cover of this issue illustrates Ewa Klekot's article about how Pope John Paul II (Karol Jósef Wojtyla, 1920,2005) was popularly commemorated in Poland during the ,Week of Vigil', 1,8 April 2005. One of the longest-serving pontiffs of modern times, and the only non-Italian to have been elected since the Dutch Adrian VI in the 1520s, Pope John Paul II died on 2 April and was buried on 8 April in the grottoes under St Peter's Basilica in Rome, the Tomb of the Popes. During this week unprecedented expressions of grief and mourning were displayed in Polish cities. Whole streets and squares were converted into temporary shrines, decorated with burning candles, flowers, papal portraits, letters to the departed Pope and both papal and Polish flags. The front cover shows a mother and daughter paying homage by lighting and placing candles along John Paul II Avenue, one of the biggest streets in central west Warsaw. The back cover shows a spontaneous memorial in the form of a large cross in Pilsudski Square, Warsaw, where John Paul II had celebrated mass during his first visit to Poland in 1979, the year after he was elected Pope. The memorial incorporates lanterns, flower offerings and a commemoration board made by primary school children. In constructing unofficial, vernacular and temporary commemorative sites from candles and flowers, Polish citizens re-enacted both the rituals of All Saints Day and the tradition of arranging flowers and candles in public places. The latter is, in the Polish context, more than an expression of grief provoked by deaths of important Polish personalities: it is also historically a way of expressing popularly shared feelings and values, and of asserting a degree of autonomy from the government of the day. Until 1990, Pope John Paul II symbolized powerful nationalist-Catholic sentiments that had helped Polish citizens stand up to communism. However, the slogan ,I didn't mourn the pope' which appeared on T-shirts made by a young Polish artists' group suggests that this new alliance between religion and official politics is being contested. Mourning rituals surrounding public figures frequently have a multivocal quality, and are barometers of change. As part of its ongoing engagement with public events, ANTHROPOLOGY TODAY invites debate on how collective memories are punctuated and shaped by historical moments such as these. [source]


    The Museum is the Exhibit

    ARCHITECTURAL DESIGN, Issue 1 2010
    Jayne Merkel
    Abstract Frank Lloyd Wright's bold spiralling building on Fifth Avenue in New York City is still, 50 years after it opened, the Guggenheim's most popular attraction. Surveys show that as many as a third of the visitors come to see the building itself, rather than the exhibitions or permanent collections on view. And yet, as Jayne Merkel explains, the New York Guggenheim's recent retrospective exhibition of the architect's work was the museum's first. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    ChemInform Abstract: Copper-Mediated N- and O-Arylations with Arylboronic Acids in a Continuous Flow Microreactor: A New Avenue for Efficient Scalability.

    CHEMINFORM, Issue 14 2009
    Brajendra K. Singh
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Orthogonal Transformations on Solid Substrates: Efficient Avenues to Surface Modification

    ADVANCED MATERIALS, Issue 34 2009
    Leena Nebhani
    Abstract The performance of solid substrates is not only governed by their molecular constitution, but is also critically influenced by their surface constitution at the solid/gas or solid/liquid interface. In here, we critically review the use of orthogonal chemical transformations (so-called click chemistry) to achieve efficient surface modifications of materials ranging from gold and silica nanoparticles, polymeric films, and microspheres to fullerenes as well as carbon nanotubes. In addition, the functionalization of surfaces via click chemistry with biomolecules is explored. Although a large host of reactions fulfilling the click -criteria exist, pericyclic reactions are most frequently employed for efficient surface modifications. The advent of the click chemistry concept has led,as evident from the current literature,to a paradigm shift in current approaches for materials modification: Away from unspecific and nonselective reactions to highly specific true surface engineering. [source]


    Intracavity Laser Absorption Spectroscopy for flame diagnostics

    ISRAEL JOURNAL OF CHEMISTRY, Issue 2 2007
    Igor Rahinov
    Intracavity Laser Absorption Spectroscopy (ICLAS) is one of the most sensitive techniques in absorption spectroscopy. Application of this technique to combustion diagnostics offers many important advantages. Since ICLAS is an absorption-based method, it is not limited by the quenching and predissociation effects that compromise the sensitivity of Laser Induced Fluorescence (LIF), one of the most sensitive and widespread techniques applied in combustion diagnostics. For that reason, radicals that are subject to strong collisional quenching or predissociation, such as 1CH2 and HCO, can be measured by ICLAS with sensitivity much greater than that of LIF. For the same reason, ICLAS also possesses better sensitivity for NH and HNO. The present paper overviews the ICLAS measurements performed during the last decade in our laboratory and also presents recent results: first-time detection of the HSO radical in flames by ICLAS and application of Fiber Laser Intracavity Absorption Spectroscopy (FLICAS) based on Er-doped fiber laser for in-situ detection of ammonia and hydrogen cyanide in a low-pressure methane/air flame doped with a small amount of ammonia. Avenues for future research are discussed. [source]


    Utilisation of C2,C4 gaseous hydrocarbons and isoprene by microorganisms

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2006
    Jean L Shennan
    Abstract Microorganisms able to grow on low molecular weight aliphatic hydrocarbon gases, i.e. the n -alkanes, ethane, propane and butane, and the terminal alkenes, ethylene, propylene and butylene, are not uncommon but mainly belong to certain taxonomic groups. These microbes are described in this review together with the pathways by which the hydrocarbons are assimilated. Microbial oxidation of the volatile alkadiene, isoprene, is also discussed. Avenues for possible commercial exploitation of these metabolic activities are also reviewed. Short-chain n -alkane-utilising organisms have been investigated as tools in petroleum exploration and for production of single cell protein. More recently microbes grown on gaseous hydrocarbons other than methane have been evaluated for use in biotechnological production of epoxides, synthesis of chiral epoxyalkanes and as catalysts in bioremediation systems. Copyright © 2005 Society of Chemical Industry [source]


    Club Drug Use in Hispanic College Students

    THE AMERICAN JOURNAL ON ADDICTIONS, Issue 4 2010
    Michelle R. Resor BA
    Club drug use and correlates were examined among 251 Hispanic college students on the Texas,México border. Participants completed questionnaires on substance use, club drug attitudes and beliefs, sexual risk-taking behaviors, depressive symptoms, and acculturation. One-quarter of participants reported club drug use. Regression analyses demonstrated that frequency and history of lifetime use were consistently associated with more permissive drug attitudes and other substance use but not sexual risk-taking, depression symptoms, or acculturation. Acculturation was negatively associated with frequency of club drug use, yet positively associated with use of other illicit substances. Avenues for future studies are suggested.,(Am J Addict 2010;00:1,6) [source]


    Downstream from calcium signalling: mitochondria, vacuoles and pancreatic acinar cell damage

    ACTA PHYSIOLOGICA, Issue 1 2009
    S. Voronina
    Abstract Ca2+ is one of the most ancient and ubiquitous second messengers. Highly polarized pancreatic acinar cells serve as an important cellular model for studies of Ca2+ signalling and homeostasis. Downstream effects of Ca2+ signalling have been and continue to be an important research avenue. The primary functions regulated by Ca2+ in pancreatic acinar cells , exocytotic secretion and fluid secretion , have been defined and extensively characterized in the second part of the last century. The role of cytosolic Ca2+ in cellular pathology and the related question of the interplay between Ca2+ signalling and bioenergetics are important current research lines in our and other laboratories. Recent findings in these interwoven research areas are discussed in the current review. [source]


    Practicing Change: Curriculum Adaptation and Teacher Narrative in the Context of Mathematics Education Reform

    CURRICULUM INQUIRY, Issue 2 2006
    COREY DRAKE
    ABSTRACT The use of reform-based curricula is one possible avenue for the widespread implementation of mathematics education reform. In this article, we present two urban elementary teachers' models of curriculum use that describe how each teacher used a reform-oriented mathematics curriculum. In particular, we examine when and how the teachers made adaptations to the curriculum. We find that each teacher had a distinctive pattern of adaptation when using the curriculum. Furthermore, these patterns were related to three key aspects of the teachers' own experiences with mathematics: their early memories of learning mathematics, their current perceptions of themselves as mathematics learners, and their mathematical interactions with family members. Implications for curriculum design and implementation are discussed. [source]


    Plebiscites, Fiscal Policy and the Poor: Learning from US Experience with Direct Democracy

    DEVELOPMENT POLICY REVIEW, Issue 5 2005
    Arthur A. Goldsmith
    Many countries are contemplating direct political participation as a way of giving marginalised people more say in national fiscal policies. The United States is a natural laboratory for studying how large-scale direct democracy actually works in this regard. Every state allows voters to decide certain ballot questions about how to raise and spend public revenue. The 100-year record shows, however, that state-wide plebiscites fail to produce uniformly equitable or financially sustainable government budgets, or to mobilise low-income groups to defend their economic interests. When called upon to make decisions about state government spending, the electorate is apt to disregard any hardship for poor people. Traditional political parties and advocacy organisations are usually a more promising avenue for promoting anti-poverty budgets. [source]


    Policies, Interventions and Institutional Change in Pastoral Resource Management in Borana, Southern Ethiopia

    DEVELOPMENT POLICY REVIEW, Issue 4 2004
    Abdul B. Kamara
    The Borana rangelands of Southern Ethiopia are characterised by extensive livestock production under a communal land-use system that has evolved in response to variable rainfall and uncertain production conditions. However, the last two decades have witnessed an increasing privatisation of rangelands for crop production and private grazing. The results of a quantitative assessment are used to develop a framework for assessing the drivers of change and their long-term implications. It is concluded that certain national policies have resulted in conflicts of authority between traditional and formal systems, creating an avenue for spontaneous enclosures, associated conflicts and decreasing human welfare. [source]


    New developments in small molecules targeting p53 pathways in anticancer therapy

    DRUG DEVELOPMENT RESEARCH, Issue 6 2008
    Chit Fang Cheok
    Abstract The tumor suppressor p53 is frequently inactivated in a wide variety of cancers and point mutations or deletions of the p53 gene are associated with poor prognosis in cancer. About half of all human tumors carry wildtype p53 but p53 wildtype functions are often suppressed by the overexpression of murine double minute 2 (MDM2), a negative regulator of p53. Restoration of p53 functions in tumor cells, therefore, represents an attractive strategy in combating cancer and has been the focus of intensive anticancer drug discovery. One strategy is to antagonize MDM2 functions and initial success was demonstrated in vitro and in xenograft tumor models using newly discovered small molecule inhibitors and antisense oligonucleotides. The new discovery of a compound targeting SirT1 (a member of the sirtuin family) in a p53-dependent reporter screen highlighted the importance of another negative regulator of p53 and offers an additional avenue for drug discovery and research on p53-activating therapeutics. Here, we discuss the developments of p53-activating small molecules and their potential use in combination therapy with established chemotherapeutics. These small molecules were discovered from chemical library screening using biochemical assays or cellular-based assays, and/or structure-based rational drug design strategies. Drug Dev Res 69:289,296, 2008. © 2008 Wiley-Liss, Inc. [source]


    T-type calcium channels: an emerging therapeutic target for the treatment of pain

    DRUG DEVELOPMENT RESEARCH, Issue 4 2006
    Terrance P. Snutch
    Abstract It has become generally accepted that presynaptic high voltage,activated N-type calcium channels located in the spinal dorsal horn are a validated clinical target for therapeutic interventions associated with severe intractable pain. Low voltage,activated (T-type) calcium channels play a number of critical roles in nervous system function, including controlling thalamocortical bursting behaviours and the generation of spike wave discharges associated with slow wave sleep patterns. There is a growing body of evidence that T-type calcium channels also contribute in several ways to both acute and neuropathic nociceptive behaviours. In the one instance, the Cav3.1 T-type channel isoform likely contributes an anti-nociceptive function in thalamocortical central signalling, possibly through the activation of inhibitory nRT neurons. In another instance, the Cav3.2 T-type calcium channel subtype acts at the level of primary afferents in a strongly pro-nociceptive manner in both acute and neuropathic models. While a number of classes of existing clinical agents non-selectively block T-type calcium channels, there are no subtype-specific drugs yet available. The development of agents selectively targeting peripheral Cav3.2 T-type calcium channels may represent an attractive new avenue for therapeutic intervention. Drug Dev. Res. 67:404,415, 2006. © 2006 Wiley-Liss, Inc. [source]


    Role of mitogen-activated protein kinase cascades in P2Y receptor-mediated trophic activation of astroglial cells ,

    DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001
    Joseph T. Neary
    Abstract The trophic actions of extracellular nucleotides and nucleosides on astroglial cells in the central nervous system may be important in development as well as injury and repair. Here we summarize recent findings on the signal transduction mechanisms and gene expression that mediate the trophic effects of extracellular ATP on astrocyte cultures, with a particular emphasis on mitogenesis. Activation of ATP/P2Y receptors leads to the stimulation of mitogen-activated protein kinase (MAPK) cascades, which play a crucial role in cellular proliferation, differentiation, and survival. Inhibition of ERK and p38, members of two distinct MAPK cascades, interferes with the ability of extracellular ATP to stimulate astrocyte proliferation, thereby indicating their importance in mitogenic signaling by P2Y receptors. Signaling from P2Y receptors to ERK involves phospholipase D and a calcium-independent protein kinase C isoform, PKC; this pathway is independent of the phosphatidylinositol-phospholipase C / calcium pathway which is also coupled to P2Y receptors. Pharmacological studies suggest that astrocytes may express an as-yet uncloned P2Y receptor that recruits a novel MEK activator in the ERK cascade. Extracellular ATP can also potentiate fibroblast growth factor (FGF)-2-induced proliferation, and studies on interactions between ATP and FGF-2 signaling pathways have revealed that although ATP does not activate cRaf-1, the first protein kinase in the ERK cascade, it can reduce cRaf-1 activation by FGF-2. As intermediate levels of Raf activity stimulate the cell cycle, the partial inhibition of FGF-induced Raf activity by ATP may contribute to the enhancing effect of ATP on FGF-2-induced astrocyte proliferation. Activation of P2Y receptors also leads to nuclear signaling, and the use of DNA arrays has shown that treatment of astrocytes with extracellular ATP results in the up- and downregulation of a number of genes; studies to determine which of these genes are regulated by MAPKs are now in progress. Elucidation of the components of MAPK pathways linked to P2Y receptors and subsequent changes in gene expression may provide targets for a new avenue of drug development aimed at the management of astrogliosis which occurs in many types of neurological disorders and neurodegeneration. Drug Dev. Res. 53:158,165, 2001. Published 2001 Wiley-Liss, Inc. [source]


    Intracellular FITC-derivatization with PEG

    ELECTROPHORESIS, Issue 21 2005
    Fanguo Chen
    Abstract In order to investigate the amino acids (AAs) in plant cells, we explore an avenue for intracellular derivatization with FITC. In this method, FITC was used to mark AAs in living protoplasts derived from embryogenic calli of common wheat (Triticum aestivum L.,c.v. Jinan,177) mediated by PEG. After FITC-derivatization, the AAs in the lysate were determined by CE. The result reveals that this PEG method can be used to transfer FITC into plant cells efficiently, which provides a good method for AA,analysis in plant cells. [source]


    GENETIC STUDY: FULL ARTICLE: Incorporating age at onset of smoking into genetic models for nicotine dependence: evidence for interaction with multiple genes

    ADDICTION BIOLOGY, Issue 3 2010
    Richard A. Grucza
    ABSTRACT Nicotine dependence is moderately heritable, but identified genetic associations explain only modest portions of this heritability. We analyzed 3369 SNPs from 349 candidate genes and investigated whether incorporation of SNP-by-environment interaction into association analyses might bolster gene discovery efforts and prediction of nicotine dependence. Specifically, we incorporated the interaction between allele count and age at onset of regular smoking (AOS) into association analyses of nicotine dependence. Subjects were from the Collaborative Genetic Study of Nicotine Dependence and included 797 cases ascertained for Fagerström nicotine dependence and 811 non-nicotine-dependent smokers as controls, all of European descent. Compared with main effect models, SNP × AOS interaction models resulted in higher numbers of nominally significant tests, increased predictive utility at individual SNPs and higher predictive utility in a multi-locus model. Some SNPs previously documented in main effect analyses exhibited improved fits in the joint analysis, including rs16969968 from CHRNA5 and rs2314379 from MAP3K4. CHRNA5 exhibited larger effects in later-onset smokers, in contrast with a previous report that suggested the opposite interaction (Weiss et al. 2008). However, a number of SNPs that did not emerge in main effect analyses were among the strongest findings in the interaction analyses. These include SNPs located in GRIN2B (P = 1.5 × 10,5), which encodes a subunit of the N-methyl-D-aspartate receptor channel, a key molecule in mediating age-dependent synaptic plasticity. Incorporation of logically chosen interaction parameters, such as AOS, into genetic models of substance use disorders may increase the degree of explained phenotypic variation and constitutes a promising avenue for gene discovery. [source]


    Examination of intravenous and intra-CSF protein delivery for treatment of neurological disease

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009
    Kim M. Hemsley
    Abstract Mucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and neurodegeneration typify this and many other lysosomal storage disorders. We propose that intra-cerebrospinal fluid protein delivery represents a potential therapeutic avenue for treatment of this and other neurodegenerative conditions; however, technical restraints restrict examination of its use prior to adulthood in mice. We have used a naturally-occurring Mucopolysaccharidosis type IIIA mouse model to determine the effectiveness of combining intravenous protein replacement (1 mg/kg) from birth to 6 weeks of age with intra-cerebrospinal fluid sulphamidase delivery (100 ,g, fortnightly from 6 weeks) on behaviour, the level of heparan sulphate-oligosaccharide storage and other neuropathology. Mice receiving combination treatment exhibited similar clinical improvement and reduction in heparan sulphate storage to those only receiving intra-cerebrospinal fluid enzyme. Reductions in micro- and astrogliosis and delayed development of ubiquitin-positive lesions were seen in both groups. A third group of intravenous-only treated mice did not exhibit clinical or neuropathological improvements. Intra-cerebrospinal fluid injection of sulphamidase effectively, but dose-dependently, treats neurological pathology in Mucopolysaccharidosis type IIIA, even when treatment begins in mice with established disease. [source]


    The human basophil , a novel target of the neuropeptide alpha-melanocyte-stimulating hormone

    EXPERIMENTAL DERMATOLOGY, Issue 8 2006
    M. Böhm
    There is increasing evidence that the basophil does not only play an important role in acute allergic reactions but also in the pathogenesis of chronic allergic disorders. Here we show that human basophils express melanocortin receptors (MC-Rs) and respond to alpha-melanocyte-stimulating hormone (alpha-MSH) with regulation of proallergic cytokine expression and modulation of basophil activation markers. Using primers against all known MC-R subtypes we demonstrate that the human basophil cell line KU812 expresses MC-1R. Expression of MC-1R on the surface of KU812 cells was confirmed by FACS analysis using an anti-MC-1R antibody. The MC-1R expressed by KU812 cells was functionally active as alpha-MSH induced intracellular cAMP in a dose-dependent manner. Moreover, alpha-MSH abrogated the effect of calcium ionophore A23187 on IL-4 mRNA expression in these cells. The relevance of the above findings was corroborated by showing that MC-1R surface expression is also detectable in basophils of leukocyte suspensions derived from whole human blood. Most interestingly, alpha-MSH was capable of suppressing the inductive effect of fMLP on surface expression of the basophil activation marker CD63 in leukocyte suspensions of atopic individuals. Likewise, alpha-MSH significantly blocked grass pollen-induced up-regulation of CD63 in leukocyte suspensions of patients with grass pollen allergy. Our findings highlight a novel functional dimension of alpha-MSH. In addition, MSH peptides may become a novel future therapeutic avenue in treating human allergic diseases. [source]


    Somatic Gene Transfer: Implications for Cardiovascular Control

    EXPERIMENTAL PHYSIOLOGY, Issue 6 2000
    S. Kasparov
    There is a great need for closer integration between physiologists and molecular biologists. These two research fields might soon form a single research discipline under the umbrella of molecular physiology. One of the areas where this interaction may be particularly fruitful is with somatic gene transfer using replication-deficient viral vectors. We applied this approach to study the central control of the cardiovascular system at the level of the nucleus of the solitary tract (NTS). We assess critically this new methodology as applied to experiments in an integrative environment (such as the whole animal). The usefulness of in vivo gene transfer is illustrated by an experiment where viral gene delivery helped to circumvent the problem imposed by an absence of a specific pharmacological blocker of the enzyme, endothelial nitric oxide synthase (eNOS). The pros and cons of using adenoviral vectors as opposed to conventional pharmacological approaches are discussed. We conclude that the use of adenoviruses to manipulate genes offers a new avenue for physiologists studying neuronal mechanisms in integrative models. [source]


    Coherent Accounts of Coping with a Chronic Illness: Convergences and Divergences in Family Measurement Using a Narrative Analysis

    FAMILY PROCESS, Issue 4 2003
    BARBARA H. FIESE Ph.D.
    Researchers and clinicians have shown increasing interest in family narratives as an avenue for accessing the family meaning-making process. In this study, we examine the convergences and divergences between narrative assessment, family self-report, and verbal accounts of family climate. Sixty-two families with a child with pediatric asthma were interviewed about the impact that asthma had on family life. These interviews were coded for narrative coherence, relationship expectations, and engagement with the interviewer. Primary caregivers were also interviewed using the Five Minute Speech sample (FMSS) and completed self-report assessments of family functioning (Family Assessment Device [FAD] Impact on the Family Scale [IOF]). Contrary to prediction. Narrative coherence was higher in those cases where Emotional Over-involvement (EOI) was present on the FMSS. Narrative coherence and engagement with the interviewer were positively related to self-report of family problem solving, communication, and affective responsiveness as measured on the FAD. Divergences and convergences between different types of family measurement are discussed in light of meaning-making processes associated with coping with a chronic illness. [source]


    Hedging Affecting Firm Value via Financing and Investment: Evidence from Property Insurance Use

    FINANCIAL MANAGEMENT, Issue 3 2010
    Hong Zou
    I provide evidence about the value effects of alternative risk management by examining corporate purchase of property insurance, a commonly used pure hedge of asset-loss risks. Using an insurance data set from China, I find that there is an inverted U-shape effect of the extent of property insurance use on firm value measured by several versions of Tobin's Q. Therefore, the use of property insurance, to a certain degree, has a positive effect on firm value; however, over insurance appears detrimental to firm value. Given that the inflection points occur at relatively high levels of the observed insurance spending, insurance use appears beneficial to the majority of my sample firms. The estimated average hedging premium is about 1.5%. I demonstrate that an avenue for insurance to create value in China is that it helps firms secure valuable new debt financing and enhance investment. [source]


    Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

    FUNCTIONAL ECOLOGY, Issue 1 2005
    K. JOHNSEN
    Summary 1In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of mid-rotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol,1 atmospheric CO2 for 31 months. 2Tank CO2 was depleted in atmospheric 13C; foliage of elevated CO2 trees had ,13C of ,42·9, compared with ,29·1 for ambient CO2 trees. 3Roots 1 m from the base of elevated CO2 -grown trees had more negative ,13C relative to control trees, and this difference was detected, on average, up to 5·8, 3·7 and 3·7 m away from the trees for 0,2, 2,5 and >5 mm root-size classes, respectively. Non-fertilized tree roots extended as far as fertilized trees despite the fact that their above-ground biomass was less than half that of fertilized trees. 4These results are informative with respect to root sampling intensity and protocol, and the distances required between experimental manipulations to evaluate below-ground processes of independent treatments. 5Fine-root turnover has usually been estimated to range from weeks to 3 years, representing a major avenue of carbon flux. Using a mixing model we calculated that 0,2 mm roots had a mean residence time of 4·5 years indicating relatively slow fine-root turnover, a result that has major implications in modelling C cycling. [source]


    Glutathione depletion in hippocampal cells increases levels of H and L ferritin and glutathione S-transferase mRNAs

    GENES TO CELLS, Issue 5 2007
    Nadya Morozova
    Glutathione plays an essential role in maintaining cellular redox balance, protecting cells from oxidative stress and detoxifying xenobiotic compounds. Glutathione depletion has been implicated in neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Cells of neuronal origin are acutely sensitive to glutathione depletion, providing an avenue for studying the mechanisms invoked for neuronal survival in response to oxidant challenge. We investigated the changes in mRNA profile in HT22 hippocampal cells following administration of homocysteic acid (HCA), a glutathione-depleting drug. We report that HCA treatment of HT22 murine hippocampal cells increases the levels of the mRNAs encoding at least three proteins involved in protection from oxidant injury, the mRNAs encoding heavy (H) and light (L) ferritin and glutathione S-transferase (GST). [source]


    Electron-Rich Alcohol-Soluble Neutral Conjugated Polymers as Highly Efficient Electron-Injecting Materials for Polymer Light-Emitting Diodes

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
    Fei Huang
    Abstract We report the design and synthesis of three alcohol-soluble neutral conjugated polymers, poly[9,9-bis(2-(2-(2-diethanolaminoethoxy) ethoxy)ethyl)fluorene] (PF-OH), poly[9,9-bis(2-(2-(2-diethanol-aminoethoxy)ethoxy)ethyl)fluorene- alt -4,4,-phenylether] (PFPE-OH) and poly[9,9-bis(2-(2-(2-diethanolaminoethoxy) ethoxy)ethyl)fluorene- alt -benzothiadizole] (PFBT-OH) with different conjugation length and electron affinity as highly efficient electron injecting and transporting materials for polymer light-emitting diodes (PLEDs). The unique solubility of these polymers in polar solvents renders them as good candidates for multilayer solution processed PLEDs. Both the fluorescent and phosphorescent PLEDs based on these polymers as electron injecting/transporting layer (ETL) were fabricated. It is interesting to find that electron-deficient polymer (PFBT-OH) shows very poor electron-injecting ability compared to polymers with electron-rich main chain (PF-OH and PFPE-OH). This phenomenon is quite different from that obtained from conventional electron-injecting materials. Moreover, when these polymers were used in the phosphorescent PLEDs, the performance of the devices is highly dependent on the processing conditions of these polymers. The devices with ETL processed from water/methanol mixed solvent showed much better device performance than the devices processed with methanol as solvent. It was found that the erosion of the phosphorescent emission layer could be greatly suppressed by using water/methanol mixed solvent for processing the polymer ETL. The electronic properties of the ETL could also be influenced by the processing conditions. This offers a new avenue to improve the performance of phosphorescent PLEDs through manipulating the processing conditions of these conjugated polymer ETLs. [source]


    Producing Supramolecular Functional Materials Based on Fiber Network Reconstruction

    ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
    Shaokun Tang
    Abstract Here, the creation of new supramolecular functional materials based on the reconstruction of three-dimensional interconnecting self-organized nanofiber networks by a surfactant is reported. The system under investigation is N -lauroyl- L -glutamic acid di- n -butylamide in propylene glycol. The architecture of networks is implemented in terms of surfactants, e.g. sorbitan monolaurate. The elastic performance of the soft functional material is either weakened or strengthened (up to 300% for the current system) by reconstructing the topology of a fiber network. A topology transition of gel fiber network from spherulite-like to comb-like to spherulite-like is performed with the introduction of this surfactant. The Span 20 molecules are selectively adsorbed on the side surfaces of the crystalline fibers and promote the nucleation of side branches, giving rise to the transformation of the network architecture from spherulite-like topology to comb-like topology. At high surfactant concentrations, the occurrence of micelles may provide an increasing number of nucleation centers for spherulitic growth, leading to the reformation of spherulite-like topology. An analysis on fiber network topology supports and verifies a perfect agreement between the topological behavior and the rheological behavior of the functional materials. The approach identified in this study opens up a completely new avenue in designing and producing self-supporting supramolecular functional materials with designated macroscopic properties. [source]


    New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy

    ADVANCED FUNCTIONAL MATERIALS, Issue 10 2009
    Kyeongsoon Park
    Abstract Advances in nanotechnology have contributed to the development of novel nanoparticles that enable the tumor-specific delivery of imaging probes and therapeutic agents in cancer imaging and therapy. Nanobiotechnology combines nanotechnology with molecular imaging, which has led to the generation of new multifunctional nanoparticles for cancer imaging and therapy. Multifunctional nanoparticles hold great promise for the future of cancer treatment because they can detect the early onset of cancer in each individual patient and deliver suitable therapeutic agents to enhance therapeutic efficacy. The combination of tumor-targeted imaging and therapy in an all-in-one system provides a useful multimodal approach in the battle against cancer. Novel multifunctional nanoparticles thus offer a new avenue in the application of personalized medicine in the near future. Herein, new trends and the significance of novel multifunctional nanoparticles in cancer imaging and therapy are reviewed. [source]


    Directed Helical Growth: A Spring-Like Behavior of Chiral Block Copolymer with Helical Nanostructure Driven by Crystallization (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 3 2009
    Mater.
    Crystalline helices (PLLA crystallization directed by helical confined microdomains) and crystalline cylinders (phase transformation of helical nano structures dictated by crystallization) are obtained by controlling the crystallization temperature of PLLA with respect to the glass transition temperature of PS in PS-PLLA block copolymers; this process is described by J.-W. Chiang et al. on page 448. A spring-like behavior of the PLLA helical nanostructures embedded in the PS matrix can be driven by crystallization, so as to dictate the transformation of the helices, resulting in crystalline cylinders that might represent a possible avenue for the design of switchable large-strain actuators. [source]


    Dendrimer-Functionalized Iron Oxide Nanoparticles for Specific Targeting and Imaging of Cancer Cells,

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2007
    H. Wang
    Abstract We demonstrated a unique approach that combines a layer-by-layer (LbL) self-assembly method with dendrimer chemistry to functionalize Fe3O4 nanoparticles (NPs) for specific targeting and imaging of cancer cells. In this approach, positively charged Fe3O4 NPs (8.4,nm in diameter) synthesized by controlled co-precipitation of FeII and FeIII ions were modified with a bilayer composed of polystyrene sulfonate sodium salt and folic acid (FA)- and fluorescein isothiocyanate (FI)-functionalized poly(amidoamine) dendrimers of generation 5 (G5.NH2 -FI-FA) through electrostatic LbL assembly, followed by an acetylation reaction to neutralize the remaining surface amine groups of G5 dendrimers. Combined flow cytometry, confocal microscopy, transmission electron microscopy, and magnetic resonance imaging studies show that Fe3O4/PSS/G5.NHAc-FI-FA NPs can specifically target cancer cells overexpressing FA receptors. The present approach to functionalizing Fe3O4 NPs opens a new avenue to fabricating various NPs for numerous biological sensing and therapeutic applications. [source]