Home About us Contact | |||
Scanning Technology (scanning + technology)
Selected AbstractsA comparative study of 3D scanning in engineering, product and transport design and fashion design educationCOMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 3 2009A. Kus Abstract The aim of this paper is to evaluate the use of three-dimensional (3D) scanning technologies for design and engineering courses. This paper will provide a comparative discussion of the current 3D scanning technologies; and then describes three experimental studies in engineering, transport design and fashion design. Using 3D scanner technology the experiments tested the transferral of a variety of different data from scanned organic 3D shapes to 3D CAD packages for learning and teaching in undergraduate education. © 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 17: 263,271, 2009; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20213 [source] Seismic evaluation of 1940s asymmetric wood-frame building using conventional measurements and high-definition laser scanningEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2009Khalid M. Mosalam Abstract This study presents results from shake table experiments of a wood-frame building conducted at the University of California, Berkeley. A 13.5-ft × 19.5-ft two-story wood-frame building representing San Francisco 1940s design of a residential building with a garage space on the first story (house-over-garage) was tested. The test building was subjected to scaled ground motion based on Los Gatos record from Loma Prieta 1989 earthquake. The strong motion time history was scaled to match design spectra of a site in Richmond district of San Francisco. The test results demonstrated the seismic vulnerability of the test building due to soft story mechanism and significant twisting when shaken in two horizontal directions. In addition to conventional instrumentation for measuring acceleration and position of selected points of the test building, high-definition laser scanning technology was employed to assess global and local anomalies of the building after the shake table tests. The analysis conducted in this study showed very good correlation between conventional data recorded from position transducers and the laser scans. These laser scans expanded limits of conventional data at discrete points and allowed analyzing the whole building after shaking. Copyright © 2009 John Wiley & Sons, Ltd. [source] TREATMENT OF CULTIVATED HIGHBUSH BLUEBERRIES (VACCINIUM CORYMBOSUM L.) WITH ELECTRON BEAM IRRADIATION: DOSIMETRY AND PRODUCT QUALITYJOURNAL OF FOOD PROCESS ENGINEERING, Issue 2 2008M.A. MORENO ABSTRACT We determined the dose distribution within a tray of highbush blueberries (Vaccinium corymbosum L.) exposed to electron beam irradiation at medium levels (1.0,3.2 kGy) using Monte Carlo and computer tomography scanning technology. We also evaluated the quality of irradiated and nonirradiated (control) fruits stored at 5C and 70% relative humidity during 14 days by a series of chemical analyses. Blueberries packed in plastic clamshell containers (trays) were irradiated using a 10-MeV linear accelerator with single-beam fixture (top only). Irradiation of blueberries at 1.1 kGy had no significant (P > 0.05) effect on the fruit quality with the exception of ascorbic acid, which decreased by 17% by the end of storage. Irradiation had an enhancing effect on the total phenolic and tannin content of all the irradiated fruits (10,20% increases). The calculated dose distribution in a pack of blueberries confirmed that the dose is not uniformly distributed within the pack because of density inhomogeneities (flesh, skin air). Dose levels at the bottom of the trays were 18 (±8%) higher than at the top. These results suggest that careful dose distribution examination must be conducted prior to setting up of an irradiation run for the packed fruits. Excellent agreement was found between measured and calculated doses at different electron beam conveyor speeds. PRACTICAL APPLICATIONS Little information is available on how electron beam irradiation penetrates a complex medium such as packed blueberries. This study presents unique results from a dose distribution calculation method using Monte Carlo simulation and computed tomography scanning techniques, which can be an effective tool for the development of proper irradiation treatment planning of packed fruits and other fresh produce. The suitability of using electron beam technology to preserve the quality characteristics and shelf life of packed blueberries was verified. [source] Characterization of amorphous solids with weak glass transitions using high ramp rate differential scanning calorimetryJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2008Derrick S. Katayama Abstract Measurement of the glass transition temperature (Tg) of proteins and other high molecular weight polymers in the amorphous state is often difficult, since the transition is extremely weak, that is, the ,Cp at the glass transition temperature is small. For example, little is known about the solid-state properties of hydroxyethyl starch (HES), which is beginning to become more commonly evaluated as a bulking agent in pharmaceutical products. For weak thermal events, such as the change in heat capacity at the Tg of a pure protein or large synthetic polymer, increased heating rate should produce greater sensitivity in terms of heat flow. Recent innovations in rapid scanning technology for differential scanning calorimetry (DSC) allow measurements on materials where the thermal events are difficult to detect by conventional DSC. In the current study, measurements of the Tg of proteins in the solid state, amorphous pharmaceutical excipients which have small ,Cp at the glass transition temperature, and bacterial spores, have all been made using high ramp rate DSC, providing information on materials that was inaccessible using conventional DSC methods. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1013,1024, 2008 [source] Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub craterMETEORITICS & PLANETARY SCIENCE, Issue 6 2004Y. Popov Thermal conductivity, thermal diffusivity, density, and porosity were measured on 120 dry and water-saturated rocks with a core sampling interval of 2,2.5 m. Nondestructive, non-contact optical scanning technology was used for thermal property measurements including thermal anisotropy and inhomogeneity. Supplementary petrophysical properties (acoustic velocities, formation resisitivity factor, internal surface, and hydraulic permeability) were determined on a selected subgroup of representative samples to derive correlations with the densely measured parameters, establishing estimated depth logs to provide calibration values for the interpretation of geophysical data. Significant short- and long-scale variations of porosity (1,37%) turned out to be the dominant factor influencing thermal, acoustic, and hydraulic properties of this post impact limestone formation. Correspondingly, large variations of thermal conductivity, thermal diffusivity, acoustic velocities, and hydraulic permeability were found. These variations of physical properties allow us to subdivide the formation into several zones. A combination of experimental data on thermal conductivity for dry and water-saturated rocks and a theoretical model of effective thermal conductivity for heterogeneous media have been used to calculate thermal conductivity of mineral skeleton and pore aspect ratio for every core under study. The results on thermal parameters are the necessary basis for the determination of heat flow density, demonstrating the necessity of dense sampling in the case of inhomogeneous rock formations. [source] Modular Preoperative Planning Software for Computer-Aided Oral Implantology and the Application of a Novel Stereolithographic Template: A Pilot StudyCLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 3 2010Xiaojun Chen PhD ABSTRACT Purpose: In the field of oral implantology, there is a trend toward computer-aided implant surgery, especially the application of computerized tomography (CT)-derived surgical templates. However, because of relatively unsatisfactory match between the templates and receptor sites, conventional surgical templates may not be accurate enough for the severely resorbed edentulous cases during the procedure of transferring the preoperative plan to the actual surgery. The purpose of this study is to introduce a novel bone,tooth-combined-supported surgical guide, which is designed by utilizing a special modular software and fabricated via stereolithography technique using both laser scanning and CT imaging, thus improving the fit accuracy and reliability. Materials and Methods: A modular preoperative planning software was developed for computer-aided oral implantology. With the introduction of dynamic link libraries and some well-known free, open-source software libraries such as Visualization Toolkit (Kitware, Inc., New York, USA) and Insight Toolkit (Kitware, Inc.) a plug-in evolutive software architecture was established, allowing for expandability, accessibility, and maintainability in our system. To provide a link between the preoperative plan and the actual surgery, a novel bone,tooth-combined-supported surgical template was fabricated, utilizing laser scanning, image registration, and rapid prototyping. Clinical studies were conducted on four partially edentulous cases to make a comparison with the conventional bone-supported templates. Results: The fixation was more stable than tooth-supported templates because laser scanning technology obtained detailed dentition information, which brought about the unique topography between the match surface of the templates and the adjacent teeth. The average distance deviations at the coronal and apical point of the implant were 0.66 mm (range: 0.3,1.2) and 0.86 mm (range: 0.4,1.2), and the average angle deviation was 1.84° (range: 0.6,2.8°). Conclusions: This pilot study proves that the novel combined-supported templates are superior to the conventional ones. However, more clinical cases will be conducted to demonstrate their feasibility and reliability. [source] |