Scanning Electron Microscope Images (scanning + electron_microscope_image)

Distribution by Scientific Domains


Selected Abstracts


The non-conserved C-terminal segments of Sine Oculis Homeobox (Six) proteins confer functional specificity

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 8 2009
Brandon P. Weasner
Scanning electron microscope image of a fly head, showing an extra eye field (red) lying on the ventral surface adjacent to the normal compound eye (red). This field results from the forced expression of mouse Six6, the vertebrate ortholog for the Drosophila optix gene. Please see the article by B. Weasner and J.P. Kumar in this issue. [source]


Chromate reduction in wastewater at different pH levels using thin iron wires,A laboratory study

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2005
Li-Yang Chang
Abstract The effectiveness of using thin zero-valent iron (Fe0) wires in the treatment of wastewater generated from a metal cleaning facility and with a pH in the range of 2 to 10 was examined. It was found that (1) when the sample containing low levels of total chromium (,14 mg/L) was mixed with iron wires at a pH of 3 to 8, 50 to 90% of the total chromium could be reduced in 4 h; (2) the initial reduction efficiency was pH-dependent: the lower the pH, the higher the reduction rate; (3) variations of solution pH, redox electrical potential, and electrical conductivity (EC) in samples were also pH-dependent; (4) the adsorption/reduction efficiency was limited by the diffusion of Cr(VI) from wastewater to the iron surface when the test duration was long; (5) when the initial pH = 3, iron corrosion and redox reaction dominated the reduction process; however, with pH = 8 or 10, corrosion, surface passivation, or metal precipitation could compete with reduction; (6) the used iron wires were still effective in chromium removal in new samples at pH = 3; and (7) some desorption of adsorbed chromium was observed in acidic samples when the test duration was long. Scanning electron microscope images and energy-dispersive X-ray spectra collected from iron samples also indicate that the efficiency of chromium adsorption/reduction is pH-dependent. Our results suggest that using zero-valent iron to polish acidic wastewater containing low contents of chromium and other heavy metals is feasible. © 2005 American Institute of Chemical Engineers Environ Prog, 2005 [source]


Generation of Nanopores Down to 10 nm for Use in Deep-Nulling Interferometry

CHEMPHYSCHEM, Issue 2 2008
Axel Wehling Dr.
Abstract Scanning electron microscope images show that it is easy to generate nanopores on polycarbonate membranes with well-defined pore diameters by ion-track perforation and subsequent magnetron sputtering with metal. The size reduction of the nanopores during sputtering with gold is a linear function of time. Images of different angles and from the bottom side of the membrane show that the channels are the smallest very close to the surface of the metal layer, have a conelike shape, and reach about half as much into the polymer membranes as the metal-layer thickness. This topographical pore shape is ideal for use as optically coherent near-field sources in deep-nulling microscopy. We present the first results of significantly improved nulling stabilization in the presence (<2 nm optical pathway difference) and the absence (<0.6 nm optical pathway difference) of the nanoapertures in the focal region of a deep-nulling microscope. [source]


Three-dimensional representation of curved nanowires

JOURNAL OF MICROSCOPY, Issue 3 2004
Z. HUANG
Summary Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus. [source]


Facile synthesis of polyaniline hemispheres in diethyl ether/ice mixture solvent and growth mechanism study

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2010
Hui-yan Ma
Abstract By using the new methodology of synthesis of container structure, we demonstrate the ability to control an improved ice-templating method to synthesis of polyaniline (PANI) in the form of hemisphere. The influence of the synthetic parameters, such as the concentration of doping-acid, oxidant, and aniline on the morphologies of PANI structures, has been investigated. It is determined that the doping acid and the second solvent added (such as diethyl ether absolute) have great positive influence on the formation of product's micro-morphology. The structure and morphology of PANI hemispheres are characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) patterns, energy-dispersive X-ray analysis (EDX), optical microscope images, and scanning electron microscope images (SEM). The formation mechanism of hemispheres in this article is well suggested. PANI hemispheres have super performance in sensitivity, time response to NH3 compared with traditional polymerization at room temperature. This work extends the field of functional materials with complex container structure and offers a new green route to synthesis of hemispherical container structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3596,3603, 2010 [source]


Effect of an anionic monomer on the pickering emulsion polymerization stabilized by titania hydrosol

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2009
Xiaomei Song
Abstract Polystyrene (PS) nanocomposite particles with high titania content are prepared by Pickering emulsion polymerization. A self-made titania hydrosol modified by an anionic monomer sodium styrene sulfonate (NaSS) is used as a stabilizer and photocatalyst. The stability of the emulsion system is greatly improved by the electrostatic interaction between negatively charged NaSS and positively charged titania nanoparticles. The nanocomposite spheres with the diameter of around 120 nm are highly charged, indicating titania-rich surfaces of latex particles. It is also proven by the field-emission transmission electron microscope and field-emission scanning electron microscope images. The well-defined core-shell structure of the obtained PS/titania composite particles is confirmed by the formation of fragile hollow titania nanospheres after thermogravimetric analysis tests. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5728,5736, 2009 [source]


Crystal Structure and Characterization of Pure and Ag-Doped (La1,xYx)2Ba2CaCu5Oz (0,x,0.5) Superconductors

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2007
Pramoda Kumar Nayak
Pure and 5 wt% of Ag-doped (La1,xYx)2Ba2CaCu5Oz superconducting compounds for x=0,0.5 have been prepared. Analysis of X-ray diffraction patterns shows that the samples are essentially in the single-phase form and they could be refined using the P4/mmm space group in a tetragonal cell. The typical lattice parameters are found to be a=b=3.879 Å, c=11.646 Å for x=0 and a=b=3.856 Å, c=11.576 Å for x=0.5 samples. The detailed crystal structure parameters are presented. The average grain size values from scanning electron microscope images are found to be in the order of 1,3 ,m. Temperature variations of ac susceptibility and electrical resistivity have been measured. Superconducting transitions with diamagnetic Tc ranging from 60 to 75 K have been observed, with the maximum Tc for the x=0.25 sample. Ag-doped samples exhibit improved inter-granular coupling and homogeneous oxygenation. [source]


Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2005
Lekha Sleno
The purpose of the present paper was to study some of the underlying physical and technical aspects of high-throughput quantitative matrix-assisted laser desorption/ionization (MALDI) of small drug molecules. A prototype MALDI-triple quadrupole instrument equipped with a high repetition rate laser was employed. Initially, the detection limits and dynamic ranges for the quantitation of four drugs (quinidine, danofloxacin, ramipril and nadolol) were determined. Internal standards were carefully chosen for each of these analytes in terms of structure similarity and fragmentation pathways. Three organic matrices were tested for these assays, resulting in different crystallization behaviors and measurement reproducibilities. , -Cyano-4-hydroxycinnamic acid yielded the best results and was subsequently employed for the quantitative determination of all four analytes. Further experiments considered the role of laser energy and pulse rate on the ablated areas as well as ion signals. Light microscope and scanning electron microscope images allowed the examination of the ablated area of the MALDI spots. The images showed convincing evidence that the ablated area was virtually void of crystals after analysis, with no preferential removal of material in the center of the laser's path. Average values for the amount of material ablated were determined to be 3.9,±,0.5% of the total spot size, and as low as 19.5 attomoles of analyte were detectable for our most sensitive analyte, ramipril. It was calculated that, under these assay conditions, it was possible to accurately quantify less than 1 femtomole of all analytes with the use of appropriately pure internal standards. These studies showed very promising results for the quantitative nature of MALDI for small molecules with molecular weights less than 500,Da. Copyright © 2005 John Wiley & Sons, Ltd. [source]