Scale Variability (scale + variability)

Distribution by Scientific Domains


Selected Abstracts


FINE SCALE VARIABILITY IN SOIL FROST DYNAMICS SURROUNDING CUSHIONS OF THE DOMINANT VASCULAR PLANT SPECIES (AZORELLA SELAGO) ON SUB-ANTARCTIC MARION ISLAND

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2009
NATALIE S. HAUSSMANN
ABSTRACT. Through changing soil thermal regimes, soil moisture and affecting weathering and erosion processes plants can have an important effect on the physical properties and structure of soils. Such physical soil changes can in turn lead to biological facilitation, such as vegetation-banked terrace formation or differential seedling establishment. We studied the fine scale variability in soil temperature and moisture parameters, specifically focusing on frost cycle characteristics around cushions of the dominant, vascular plant species, Azorella selago, on sub-Antarctic Marion Island. The frost season was characterised by numerous low intensity and very shallow frost cycles. Soils on eastern cushion sides were found to have lower mean and maximum temperatures in winterthan soils on western cushion sides. In addition, lower variability in temperature was found on eastern cushion sides in winterthan on western cushion sides, probably as a result of higher wind speeds on western cushion sides and/or eastern, lee-side snow accumulation. Despite the mild frost climate, extensive frost heave occurred in the study area, indicating that needle ice forms at temperatures above ,2°C. Our results demonstrate the effectiveness of frost pull as a heave mechanism under shallow frost conditions. The results highlight the importance of Azorella cushions in modifying site microclimates and of understanding the consequences of these modifications, such as potentially providing microhabitats. Such potential microhabitats are particularly important in light of current climate change trends on the island, as continued warming and drying will undoubtedly increase the need for thermal and moisture refugia. [source]


Climatic influence on the inter-annual variability of late-Holocene minerogenic sediment supply in a boreal forest catchment

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2010
Gunilla Petterson
Abstract Processes controlling sediment yield vary over a range of timescales, although most process-based observations are extremely short. Lake sediments, however, can be used to extend the observational timescale and are particularly useful when annually laminated (varved) sediment is present. The sediment record at Kassjön (N. Sweden) consists of ,6400 varves, each 0·5,1 mm thick. Image analysis was used to determine grey-scale variation and varve thickness from which annual minerogenic accumulation rate (MinAR) (mg cm,2 year,1) was inferred for the period 4486 BC , AD 1900. MinAR varies on annual to centennial scales and mainly reflects channel bank erosion by the inflow streams. The mineral input reflects the intensity of the spring run-off, which is dependent on the amount of snow accumulated during the winter, and hence MinAR is a long-term record of variability in past winter climate; other factors will be a variable response to catchment uplift, vegetation succession and pedogenesis. A major shift from low to high MinAR occurred ,250 BC, and peaks occurred around AD 250, 600, 1000, 1350 and 1650. Wavelet power spectrum analysis (confirmed by Fourier analyses) indicated significantly different periodicities throughout the period 4000 BC , AD 1700, including 275 years for the period 4000 BC , 2900 BC, 567 years for the period 2901 BC , 1201 BC, and 350 and 725 years for the period 1200 BC , AD 1700. The long-term, centennial scale variability (,350 years) may reflect solar forcing (cf the 385-year peak in tree-ring calibrated 14C activity) but interestingly, there is no obvious link to high frequency forcing, such as the North Atlantic Oscillation. The high resolution component of the record highlights the relevance of varved lake sediment records for understanding erosion dynamics in undisturbed forested catchments and their link to long-term climate dynamics and future climate change. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2007
S. Quartel
Abstract In this study, an intertidal bar and trough system on the beach of Noordwijk, The Netherlands was monitored over a 15-month period in order to examine the daily to seasonal sequential cross-shore behaviour and to establish which conditions force or interrupt this cyclic bar behaviour. The beach morphology (bars and troughs) was classified from low-tide Argus video images based on surface composition. From the classified images, time series of the landward boundary of the bar and of the trough were extracted. The time series of the alongshore-averaged boundary positions described sawtooth motion with a period between 1 and 4 months, comprising gradual landward migration followed by abrupt seaward shifts. The abrupt seaward shift appeared to be a morphological reset induced by storm events, which lasted at least 30 h with a large average root-mean-square wave height (,2 m) and offshore surge level (,0·5 m), and a small trough (<20 m wide) in the pre-storm beach morphology. The time series of the boundary positions exhibited very little longer (seasonal) scale variability, but somewhat larger smaller (daily) scale variability. The bar boundary was found to be more dynamic than the trough boundary. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north-east Pacific Ocean

FISHERIES OCEANOGRAPHY, Issue 4 2002
Franz J. Mueter
We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon (Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink (O. gorbuscha), chum (O. keta), and sockeye (O. nerka) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400,800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks. [source]


FINE SCALE VARIABILITY IN SOIL FROST DYNAMICS SURROUNDING CUSHIONS OF THE DOMINANT VASCULAR PLANT SPECIES (AZORELLA SELAGO) ON SUB-ANTARCTIC MARION ISLAND

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2009
NATALIE S. HAUSSMANN
ABSTRACT. Through changing soil thermal regimes, soil moisture and affecting weathering and erosion processes plants can have an important effect on the physical properties and structure of soils. Such physical soil changes can in turn lead to biological facilitation, such as vegetation-banked terrace formation or differential seedling establishment. We studied the fine scale variability in soil temperature and moisture parameters, specifically focusing on frost cycle characteristics around cushions of the dominant, vascular plant species, Azorella selago, on sub-Antarctic Marion Island. The frost season was characterised by numerous low intensity and very shallow frost cycles. Soils on eastern cushion sides were found to have lower mean and maximum temperatures in winterthan soils on western cushion sides. In addition, lower variability in temperature was found on eastern cushion sides in winterthan on western cushion sides, probably as a result of higher wind speeds on western cushion sides and/or eastern, lee-side snow accumulation. Despite the mild frost climate, extensive frost heave occurred in the study area, indicating that needle ice forms at temperatures above ,2°C. Our results demonstrate the effectiveness of frost pull as a heave mechanism under shallow frost conditions. The results highlight the importance of Azorella cushions in modifying site microclimates and of understanding the consequences of these modifications, such as potentially providing microhabitats. Such potential microhabitats are particularly important in light of current climate change trends on the island, as continued warming and drying will undoubtedly increase the need for thermal and moisture refugia. [source]


Early 20th century Arctic warming in retrospect

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2010
Kevin R. Wood
Abstract The major early 20th century climatic fluctuation (,1920,1940) has been the subject of scientific enquiry from the time it was detected in the 1920s. The papers of scientists who studied the event first-hand have faded into obscurity but their insights are relevant today. We review this event through a rediscovery of early research and new assessments of the instrumental record. Much of the inter-annual to decadal scale variability in surface air temperature (SAT) anomaly patterns and related ecosystem effects in the Arctic and elsewhere can be attributed to the superposition of leading modes of variability in the atmospheric circulation. Meridional circulation patterns were an important factor in the high latitudes of the North Atlantic during the early climatic fluctuation. Sea surface temperature (SST) anomalies that appeared during this period were congruent with low-frequency variability in the climate system but were themselves most likely the result of anomalous forcing by the atmosphere. The high-resolution data necessary to verify this hypothesis are lacking, but the consistency of multiple lines of evidence provides strong support. Our findings indicate that early climatic fluctuation is best interpreted as a large but random climate excursion imposed on top of the steadily rising global mean temperature associated with anthropogenic forcing. Copyright © 2009 Royal Meteorological Society [source]


Recent advances in permafrost modelling

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2008
Daniel Riseborough
Abstract This paper provides a review of permafrost modelling advances, primarily since the 2003 permafrost conference in Zürich, Switzerland, with an emphasis on spatial permafrost models, in both arctic and high mountain environments. Models are categorised according to temporal, thermal and spatial criteria, and their approach to defining the relationship between climate, site surface conditions and permafrost status. The most significant recent advances include the expanding application of permafrost thermal models within spatial models, application of transient numerical thermal models within spatial models and incorporation of permafrost directly within global circulation model (GCM) land surface schemes. Future challenges for permafrost modelling will include establishing the appropriate level of integration required for accurate simulation of permafrost-climate interaction within GCMs, the integration of environmental change such as treeline migration into permafrost response to climate change projections, and parameterising the effects of sub-grid scale variability in surface processes and properties on small-scale (large area) spatial models. Copyright © 2008 John Wiley & Sons, Ltd. [source]