Home About us Contact | |||
Scale Patterns (scale + pattern)
Selected AbstractsENVIRONMENTAL FACTORS INFLUENCING THE DISTRIBUTION OF SOUTHERN RIGHT WHALES (EUBALAENA AUSTRALIS) ON THE SOUTH COAST OF SOUTH AFRICA I: BROAD SCALE PATTERNSMARINE MAMMAL SCIENCE, Issue 3 2004Simon H. Elwen Abstract Aerial surveys over the last 32 yr have shown that the distribution of southern right whales Eubalaena australis along the south coast of South Africa is markedly discontinuous, but highly predictable. A GIS was used at a variety of scales to investigate whether this pattern was related to environmental characteristics. Whale distribution was analyzed as density per 20-min bin of longitude over two temporal and spatial scales, namely 15 bins for 32 yr, and a wider scale but shorter time period, 23 bins for 19 yr, as well as using three years of GPS accuracy data (15 bins) for finer scale analysis. Environmental factors tested were depth, distance from shore, sea floor slope, protection from swell, protection from wind, and shore type. The majority of whales were concentrated in areas that provided reasonable protection from open ocean swell and seasonal winds, and had sedimentary floors with gentle slopes. They generally avoided exposed rocky shorelines. Cow-calf pairs were found significantly closer to shore and in shallower water than unaccompanied whales, particularly off sandy beaches. Habitat choice at this time of year may be related both to energy conservation for calves and lactating females (calm sea conditions) and to protection of the new-born. [source] About the oldest domesticates among fishesJOURNAL OF FISH BIOLOGY, Issue 2004E. K. Balon Domestication of mammals such as cattle, dogs, pigs and horses preceded that of fishes by at least 10 000 years. The first domesticated fish was the common carp Cyprinus carpio. Initially it was held as an exploited captive and did not undergo major changes in body shape or colour variations. About 2000 years ago, wild common carp were most abundant in the inland delta of the Danube River. These fish were torpedo shaped, golden-yellow in colour and had two pairs of barbels and a mesh-like scale pattern. Large schools of them thrived and reproduced on the flood plains of the Danube. The Romans kept fishes in specially built ponds at that time. The common carp was an ideal candidate and its rearing became more popular in medieval times. Common carp culture gradually became the most profitable branch of agriculture in central Europe and many special ponds were built. Soon common carp were being produced in pond systems including spawning and growing ponds. Unintentional artificial selection had taken place between the 12th and mid-14th century, and deep bodied and variously scaled or scaleless domesticated forms appeared in nearly every pond system. Some colour aberrations appeared in the 1950s in Japan, which, as koi, became the most expensive of fish. Common carp were not originally domesticated in China but wild ,chi'Carassius auratus occasionally appeared as a xanthic form that, as the goldfish, has been known since 960 A.D. By the 1200s the fish were used as ornamental animals in the garden pools of rich landowners. Circa 1276 to 1546, the Chinese began keeping golden chi in aquarium-like vessels and soon rich and poor alike became breeders of the fancy domesticated goldfish. The variously shaped monstrosities and colour aberrants were freaks but they became very fashionable at that time and still are. Domesticated goldfish monstrosities were first exported from China to Japan and much later to Europe and around the world. More recently other species have been domesticated by aquarists, such as the guppy Poecilia reticulata or the neon tetra Paracheirodon innesi. Other fishes kept as ornamentals, like swordtails Xiphophorus hellerii and platies Xiphophorus maculatus, the discus and angelfishes (Cichlidae), as well as those cultured for food like the rainbow trout Oncorhynchus mykiss, channel catfish Ictalurus punctatus or sturgeons (Acipenseridae) are merely exploited captives. [source] The use of multivariate statistics to elucidate patterns of floodplain sedimentation at different spatial scalesEARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2007Martin C. Thoms Abstract Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi-scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale-related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud-dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment. Copyright © 2006 John Wiley & Sons, Ltd. [source] Integrating highly diverse invertebrates into broad-scale analyses of cross-taxon congruence across the PalaearcticECOGRAPHY, Issue 6 2009Andreas Schuldt Our knowledge on broad-scale patterns of biodiversity, as a basis for biogeographical models and conservation planning, largely rests upon studies on the spatial distribution of vertebrates and plants, neglecting large parts of the world's biodiversity. To reassess the generality of these patterns and better understand spatial diversity distributions of invertebrates, we analyzed patterns of species richness and endemism of a hyperdiverse insect taxon, carabid beetles (ca 11 000 Palaearctic species known), and its cross-taxon congruence with well-studied vertebrates (amphibians, reptiles) and plants across 107,units of the Palaearctic. Based on species accumulation curves, we accounted for completeness of the carabid data by separately examining the western (well-sampled) and eastern (partly less well-sampled) Palaearctic and China (deficient data). For the western Palaearctic, we highlight overall centers of invertebrate, vertebrate and plant diversity. Species richness and endemism of carabids were highly correlated with patterns of especially plant and amphibian diversity across large parts of the Palaearctic. For the well-sampled western Palaearctic, hotspots of diversity integrating invertebrates were located in Italy, Spain and Greece. Only analysis of Chinese provinces yielded low congruence between carabids and plants/vertebrates. However, Chinese carabid diversity is only insufficiently known and China features the highest numbers of annual new descriptions of carabids in the Palaearctic. Even based on the incomplete data, China harbors at least 25% of all Palaearctic carabid species. Our study shows that richness and endemism patterns of highly diverse insects can exhibit high congruence with general large scale patterns of diversity inferred from plants/vertebrates and that hotspots derived from the latter can also include a high diversity of invertebrates. In this regard, China qualifies as an outstanding multi-taxon hotspot of diversity, requiring intense biodiversity research and conservation effort. Our findings extend the limited knowledge on broad-scale invertebrate distributions and allow for a better understanding of diversity patterns across a larger range of the world's biodiversity than usually considered. [source] Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystemsECOHYDROLOGY, Issue 4 2009C. Tague Abstract The response of forests to a warmer climate depends upon the direct impacts of temperature on forest ecophysiology and indirect effects related to a range of biogeophysical processes. In alpine regions, reduced snow accumulation and earlier melt of seasonal snowpacks are expected hydrologic consequences of warming. For forests, this leads to earlier soil moisture recharge, and may increase summer drought stress. At the same time, increased air temperature alters plant net primary productivity. Most models of climate change impacts focus either on hydrologic behaviour or ecosystem structure or function. In this study we address the interactions between them. We use a coupled model of eco-hydrologic processes to estimate changes in evapotranspiration and vegetation productivity under temperature warming scenarios. Results from Yosemite National Park, in the California Sierra Nevada, suggest that for most snow-dominated elevations, the shift in the timing of recharge is likely to lead to declines in productivity and vegetation water use, even with increased water-use efficiency associated with elevated atmospheric CO2 concentrations. The strength of this effect, however, depends upon interactions between several factors that vary substantially across elevation gradients, including the initial timing of melt relative to the summer growing season, vegetation growth, and the extent to which initial vegetation is water-limited or temperature-limited. These climate-driven changes in vegetation water use also have important implications for summer streamflow. Results from this analysis provide a framework that can be used to develop strategic measurement campaigns and to extrapolate from local measurements of vegetation responses to watershed scale patterns. Copyright © 2009 John Wiley & Sons, Ltd. [source] Detecting the impact of oceano-climatic changes on marine ecosystems using a multivariate index: The case of the Bay of Biscay (North Atlantic-European Ocean)GLOBAL CHANGE BIOLOGY, Issue 1 2008GEORGES HEMERY Abstract Large-scale univariate climate indices (such as NAO) are thought to outperform local weather variables in the explanation of trends in animal numbers but are not always suitable to describe regional scale patterns. We advocate the use of a Multivariate Oceanic and Climatic index (MOCI), derived from ,synthetic' and independent variables from a linear combination of the total initial variables objectively obtained from Principal Component Analysis. We test the efficacy of the index using long-term data from marine animal populations. The study area is the southern half of the Bay of Biscay (43°,47°N; western Europe). Between 1974 and 2000 we monitored cetaceans and seabirds along 131000 standardized line transects from ships. Fish abundance was derived from commercial fishery landings. We used 44 initial variables describing the oceanic and atmospheric conditions and characterizing the four annual seasons in the Bay of Biscay. The first principal component of our MOCI is called the South Biscay Climate (SBC) index. The winter NAO index was correlated to this SBC index. Inter-annual fluctuations for most seabird, cetacean and fish populations were significant. Boreal species (e.g. gadiformes fish species, European storm petrel and Razorbill ,) with affinities to cold temperate waters declined significantly over time while two (Puffin and Killer Whale) totally disappeared from the area during the study period. Meridional species with affinities to hotter waters increased in population size. Those medium-term demographic trends may reveal a regime shift for this part of the Atlantic Ocean. Most of the specific observed trends were highly correlated to the SBC index and not to the NAO. Between 40% and 60% of temporal variations in species abundance were explained by the multivariate SBC index suggesting that the whole marine ecosystem is strongly affected by a limited number of physical parameters revealed by the multivariate SBC index. Aside the statistical error of the field measurements, the remaining variation unexplained by the physical characteristics of the environment correspond to the impact of anthropogenic activities such overfishing and oil-spills. [source] Scaleprinting: individual identification based on scale patternsJOURNAL OF FISH BIOLOGY, Issue 5 2010M. Morgado-Santos A non-intrusive method for individual identification of Iberian cyprinid complex Squalius alburnoides is presented, with possible application to other fish complexes and species. The proposed methodology is based on scale patterns that vary greatly between individuals. [source] Biodiversity in microbial communities: system scale patterns and mechanismsMOLECULAR ECOLOGY, Issue 7 2009J. JACOB PARNELL Abstract The relationship between anthropogenic impact and the maintenance of biodiversity is a fundamental question in ecology. The emphasis on the organizational level of biodiversity responsible for ecosystem processes is shifting from a species-centred focus to include genotypic diversity. The relationship between biodiversity measures at these two scales remains largely unknown. By stratifying anthropogenic effects between scales of biodiversity of bacterial communities, we show a statistically significant difference in diversity based on taxonomic scale. Communities with intermediate species richness show high genotypic diversity while speciose and species-poor communities do not. We propose that in species-poor communities, generally comprising stable yet harsh conditions, physiological tolerance and competitive trade-offs limit both the number of species that occur and the loss of genotypes due to decreases in already constrained fitness. In species-rich communities, natural environmental conditions result in well-defined community structure and resource partitioning. Disturbance of these communities disrupts niche space, resulting in lower genotypic diversity despite the maintenance of species diversity. Our work provides a model to inform future research about relationships between species and genotypic biodiversity based on determining the biodiversity consequences of changing environmental context. [source] Does biogeographical history matter?AUSTRAL ECOLOGY, Issue 1 2005Diversity, distribution of lotic midges (Diptera: Chironomidae) in the Australian Wet Tropics Abstract We examined broad scale patterns of diversity and distribution of lotic Chironomidae (Diptera) within the Wet Tropics bioregion of northern Queensland, Australia. Field surveys across broad latitudinal and altitudinal gradients within the Wet Tropics revealed a fauna of 87 species-level taxa in 49 genera comprising three main elements: a small genuinely tropical fraction, and larger cosmopolitan and Gondwanan components. The latter group originated when Australia, as part of the ancient Gondwana supercontinent, was situated over Antarctic latitudes with a cooler, wetter climate than today. In the Wet Tropics, cool Gondwanan taxa occurred predominantly in upland and shaded lowland sites, but no species appeared narrowly temperature restricted, and there was no faunal zonation with altitude. Most chironomid species occurred at all latitudes within the Wet Tropics, with no evidence for an enduring effect of the historical rainforest contractions on current-day distribution patterns. These findings contrast with those for aquatic faunas elsewhere in the world and for the terrestrial Wet Tropics fauna. We relate this to the generally broad environmental tolerances of Australian chironomids, and comment on why the latitudinal diversity gradient does not apply to the Australian chironomid fauna. [source] Does biogeographical history matter?AUSTRAL ECOLOGY, Issue 1 2005Diversity, distribution of lotic midges (Diptera: Chironomidae) in the Australian Wet Tropics Abstract We examined broad scale patterns of diversity and distribution of lotic Chironomidae (Diptera) within the Wet Tropics bioregion of northern Queensland, Australia. Field surveys across broad latitudinal and altitudinal gradients within the Wet Tropics revealed a fauna of 87 species-level taxa in 49 genera comprising three main elements: a small genuinely tropical fraction, and larger cosmopolitan and Gondwanan components. The latter group originated when Australia, as part of the ancient Gondwana supercontinent, was situated over Antarctic latitudes with a cooler, wetter climate than today. In the Wet Tropics, cool Gondwanan taxa occurred predominantly in upland and shaded lowland sites, but no species appeared narrowly temperature restricted, and there was no faunal zonation with altitude. Most chironomid species occurred at all latitudes within the Wet Tropics, with no evidence for an enduring effect of the historical rainforest contractions on current-day distribution patterns. These findings contrast with those for aquatic faunas elsewhere in the world and for the terrestrial Wet Tropics fauna. We relate this to the generally broad environmental tolerances of Australian chironomids, and comment on why the latitudinal diversity gradient does not apply to the Australian chironomid fauna. [source] The radiation of the Cape flora, southern AfricaBIOLOGICAL REVIEWS, Issue 4 2003H. P. LINDER ABSTRACT The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90 000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33,Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya)(Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene)and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a)experimental testing of the proposed speciation mechanisms, (b)more molecular clock estimates of the age and pattern of the radiations, and (c)more fossil evidence bearing on the past climates. [source] |