Home About us Contact | |||
Scale Growth (scale + growth)
Selected AbstractsA structure/function study of polyaminoamide dendrimers as silica scale growth inhibitorsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2005Konstantinos D Demadis Abstract Dendrimers have attracted immense attention during the last decade due to their interesting properties both from a basic and an applied research viewpoint. Encapsulation of metal nanoparticles for catalysis, drug delivery and light harvesting are only some applications of dendrimers that are breaking new ground. A novel application of dendrimer technology is described in the present paper that relates to industrial water treatment. Industrial water systems often suffer from undesirable inorganic deposits. These can form either in the bulk or on metallic surfaces, such as heat exchangers or pipelines. Silica (SiO2) scale formation and deposition is a major problem in high-silica-containing cooling waters. Scale prevention rather than removal is highly desired. In this paper, benchtop screening tests on various silica inhibition chemistries are reported, with emphasis on materials with a dendrimeric structure. Specifically, the inhibition properties of commercially available STARBURST® polyaminoamide (PAMAM) dendrimers generations 0.5, 1, 1.5, 2, and 2.5 are investigated in detail together with other commonly-used scale inhibitors. Experimental results show that inhibition efficiency largely depends on structural features of PAMAM dendrimers such as generation number and nature of the end groups. PAMAM dendrimers are effective inhibitors of silica scale growth at 40 ppm dosage levels. PAMAM dendrimers also act as silica nucleators, forming SiO2,PAMAM composites. This occurs because the SiO2 formed by incomplete inhibition interacts with cationic PAMAM-1 and -2. The general scope of silica formation and inhibition in industrial waters is also discussed. Copyright © 2005 Society of Chemical Industry [source] Linking marine and freshwater growth in western Alaska Chinook salmon Oncorhynchus tshawytschaJOURNAL OF FISH BIOLOGY, Issue 6 2009G. T. Ruggerone The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, LETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult LETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class. [source] In situ Raman monitoring of chromium oxide scale growth for stress determinationJOURNAL OF RAMAN SPECTROSCOPY, Issue 9 2001Julie Mougin Raman spectra of a growing chromia (Cr2O3) layer generated by oxidation of pure chromium at 750 °C under 150 mbar of oxygen were recorded in situ every 5 min. The wavenumber evolution of the main Raman band versus oxidation time was interpreted in terms of mechanical stress development. Comparison with Raman spectra of a fully relaxed spalled chromia layer submitted to high-pressure and high-temperature treatments showed that internal compressive stresses develop during the growth, varying from ,2.1 GPa when the scale is very thin to ,2.4 GPa when the scale reaches a thickness of 0.6 µm. Relaxation phenomena seem to take place during isothermal oxidation. During cooling, thermal stresses are induced, which are purely elastic according to the perfect reversibility of cooling,heating cycles. Copyright © 2001 John Wiley & Sons, Ltd. [source] |