Home About us Contact | |||
Score Statistics (score + statistics)
Selected AbstractsAsymptotic Distribution of Score Statistics for Spatial Cluster Detection with Censored DataBIOMETRICS, Issue 4 2008Daniel Commenges SummaryCook, Gold, and Li (2007, Biometrics 63, 540,549) extended the Kulldorff (1997, Communications in Statistics 26, 1481,1496) scan statistic for spatial cluster detection to survival-type observations. Their approach was based on the score statistic and they proposed a permutation distribution for the maximum of score tests. The score statistic makes it possible to apply the scan statistic idea to models including explanatory variables. However, we show that the permutation distribution requires strong assumptions of independence between potential cluster and both censoring and explanatory variables. In contrast, we present an approach using the asymptotic distribution of the maximum of score statistics in a manner not requiring these assumptions. [source] Tests of Proportional Hazards and Proportional Odds Models for Grouped Survival DataBIOMETRICS, Issue 4 2000Enrico A. Colosimo Summary. In this paper, we derive score test statistics to discriminate between proportional hazards and proportional odds models for grouped survival data. These models are embedded within a power family transformation in order to obtain the score tests. In simple cases, some small-sample results are obtained for the score statistics using Monte Carlo simulations. Score statistics have distributions well approximated by the chi-squared distribution. Real examples illustrate the proposed tests. [source] Tests for genetic association using family dataGENETIC EPIDEMIOLOGY, Issue 2 2002Mei-Chiung Shih Abstract We use likelihood-based score statistics to test for association between a disease and a diallelic polymorphism, based on data from arbitrary types of nuclear families. The Nonfounder statistic extends the transmission disequilibrium test (TDT) to accommodate affected and unaffected offspring, missing parental genotypes, phenotypes more general than qualitative traits, such as censored survival data and quantitative traits, and residual correlation of phenotypes within families. The Founder statistic compares observed or inferred parental genotypes to those expected in the general population. Here the genotypes of affected parents and those with many affected offspring are weighted more heavily than unaffected parents and those with few affected offspring. We illustrate the tests by applying them to data on a polymorphism of the SRD5A2 gene in nuclear families with multiple cases of prostate cancer. We also use simulations to compare the power of these family-based statistics to that of the score statistic based on Cox's partial likelihood for censored survival data, and find that the family-based statistics have considerably more power when there are many untyped parents. The software program FGAP for computing test statistics is available at http://www.stanford.edu/dept/HRP/epidemiology/FGAP. Genet. Epidemiol. 22:128,145, 2002. © 2002 Wiley-Liss, Inc. [source] Robust Quantitative Trait Association Tests in the Parent-Offspring Triad Design: Conditional Likelihood-Based ApproachesANNALS OF HUMAN GENETICS, Issue 2 2009J.-Y. Wang Summary Association studies, based on either population data or familial data, have been widely applied to mapping of genes underlying complex diseases. In family-based association studies, using case-parent triad families, the popularly used transmission/disequilibrium test (TDT) was proposed for avoidance of spurious association results caused by other confounders such as population stratification. Originally, the TDT was developed for analysis of binary disease data. Extending it to allow for quantitative trait analysis of complex diseases and for robust analysis of binary diseases against the uncertainty of mode of inheritance has been thoroughly discussed. Nevertheless, studies on robust analysis of quantitative traits for complex diseases received relatively less attention. In this paper, we use parent-offspring triad families to demonstrate the feasibility of establishment of the robust candidate-gene association tests for quantitative traits. We first introduce the score statistics from the conditional likelihoods based on parent-offspring triad data under various genetic models. By applying two existing robust procedures we then construct the robust association tests for analysis of quantitative traits. Simulations are conducted to evaluate empirical type I error rates and powers of the proposed robust tests. The results show that these robust association tests do exhibit robustness against the effect of misspecification of the underlying genetic model on testing powers. [source] Asymptotic Distribution of Score Statistics for Spatial Cluster Detection with Censored DataBIOMETRICS, Issue 4 2008Daniel Commenges SummaryCook, Gold, and Li (2007, Biometrics 63, 540,549) extended the Kulldorff (1997, Communications in Statistics 26, 1481,1496) scan statistic for spatial cluster detection to survival-type observations. Their approach was based on the score statistic and they proposed a permutation distribution for the maximum of score tests. The score statistic makes it possible to apply the scan statistic idea to models including explanatory variables. However, we show that the permutation distribution requires strong assumptions of independence between potential cluster and both censoring and explanatory variables. In contrast, we present an approach using the asymptotic distribution of the maximum of score statistics in a manner not requiring these assumptions. [source] Tests of Proportional Hazards and Proportional Odds Models for Grouped Survival DataBIOMETRICS, Issue 4 2000Enrico A. Colosimo Summary. In this paper, we derive score test statistics to discriminate between proportional hazards and proportional odds models for grouped survival data. These models are embedded within a power family transformation in order to obtain the score tests. In simple cases, some small-sample results are obtained for the score statistics using Monte Carlo simulations. Score statistics have distributions well approximated by the chi-squared distribution. Real examples illustrate the proposed tests. [source] |