SCI.

Distribution by Scientific Domains


Selected Abstracts


Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors

DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2007
Soonmoon Yoo
Abstract NG2+ cells in the adult rat spinal cord proliferate after spinal cord injury (SCI) and are postulated to differentiate into mature glia to replace some of those lost to injury. To further study these putative endogenous precursors, tissue at 3 days after SCI or from uninjured adults was dissociated, myelin partially removed and replicate cultures grown in serum-containing or serum-free medium with or without growth factors for up to 7 days in vitro (DIV). Cell yield after SCI was 5,6 times higher than from the normal adult. Most cells were OX42+ microglia/macrophages but there were also more than twice the normal number of NG2+ cells. Most of these coexpressed A2B5 or nestin, as would be expected for glial progenitors. Few cells initially expressed mature astrocyte (GFAP) or oligodendrocyte (CC1) markers, but more did at 7 DIV, suggesting differentiation of glial precursors in vitro. To test the hypothesis that NG2+ cells after SCI express progenitor-like properties, we prepared free-floating sphere and single cell cultures from purified suspension of NG2+ cells from injured spinal cord. We found that sphere cultures could be passaged in free-floating subcultures, and upon attachment the spheres clonally derived from an acutely purified single cell differentiated into oligodendrocytes and rarely astrocytes. Taken together, these data support the hypothesis that SCI stimulates proliferation of NG2+ cells that are glial progenitor cells. Better understanding the intrinsic properties of the NG2+ cells stimulated by SCI may permit future therapeutic manipulations to improve recovery after SCI. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation

GLIA, Issue 8 2010
Zhida Su
Abstract Spinal cord injury (SCI) is a cause of major neurological disability, and no satisfactory treatment is currently available. Traumatic SCI directly damages the cell bodies and/or processes of neurons and triggers a series of endogenous processes, including neuroinflammatory response and reactive astrogliosis. In this study, we found that triptolide, one of the major active components of the traditional Chinese herb Tripterygium wilfordii Hook F, inhibited astrogliosis and inflammation and promoted spinal cord repair. Triptolide was shown to prevent astrocytes from reactive activation by blocking the JAK2/STAT3 pathway in vitro and in vivo. Furthermore, astrocytic gliosis and glial scar were greatly reduced in injured spinal cord treated with triptolide. Triptolide treatment was also shown to decrease the ED-1 or CD11b-positive inflammatory cells at the lesion site. Using neurofilament staining and anterograde tracing, a significantly greater number of regenerative axons were observed in the triptolide-treated rats. Importantly, behavioral tests revealed that injured rats receiving triptolide had improved functional recovery as assessed by the Basso, Beattie, and Bresnahan open-field scoring, grid-walk, and foot-print analysis. These results suggested that triptolide promoted axon regeneration and locomotor recovery by attenuating glial scaring and inflammation, and shed light on the potential therapeutic benefit for SCI. © 2010 Wiley-Liss, Inc. [source]


Chemokine expression in the white matter spinal cord precursor niche after force-defined spinal cord contusion injuries in adult rats

GLIA, Issue 8 2010
Friederike Knerlich-Lukoschus
Abstract Inflammatory cascades induced by spinal cord injuries (SCI) are localized in the white matter, a recognized neural stem- and progenitor-cell (NSPC) niche of the adult spinal cord. Chemokines, as integrators of these processes, might also be important determinants of this NSPC niche. CCL3/CCR1, CCL2/CCR2, and SDF-1,/CXCR4 were analyzed in the ventrolateral white matter after force defined thoracic SCI: Immunoreactivity (IR) density levels were measured 2 d, 7 d, 14 d, and 42 d on cervical (C 5), thoracic (T 5), and lumbar (L 5) levels. On day post operation (DPO) 42, chemokine inductions were further evaluated by real-time RT-PCR and Western blot analyses. Cellular phenotypes were confirmed by double labeling with markers for major cell types and NSPCs (nestin, Musashi-1, NG2, 3CB2, BLBP). Mitotic profiles were investigated in parallel by BrdU labeling. After lesion, chemokines were induced in the ventrolateral white matter on IR-, mRNA-, and protein-level. IR was generally more pronounced after severe lesions, with soaring increases of CCL2/CCR2 and continuous elevations of CCL3/CCR1. SDF-1, and CXCR4 IR induction was focused on thoracic levels. Chemokines/-receptors were co-expressed with astroglial, oligodendroglial markers, nestin, 3CB2 and BLBP by cells morphologically resembling radial glia on DPO 7 to DPO 42, and NG2 or Musashi-1 on DPO 2 and 7. In the white matter BrdU positive cells were significantly elevated after lesion compared with sham controls on all investigated time points peaking in the early time course on thoracic level: Here, chemokines were co-expressed by subsets of BrdU-labeled cells. These findings suggest an important role of chemokines/-receptors in the subpial white matter NSPC niche after SCI. © 2010 Wiley-Liss, Inc. [source]


Effect of surface conditions on the color of dental resin composites

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 5 2002
Yong-Keun Lee
Abstract The objectives of this study were to evaluate the effect of surface conditions of dental resin composites on the measured color depending on the measuring geometry (SCE, SCI), and to determine the color difference (,E*) caused by varied surface conditions. Color and surface roughness (Ra) of five brands of resin composites of A2 shade were measured after polymerization and polishing with 600-, 1000-, or 1500-grit SiC paper. Color was measured according to the CIE L*a*b* color scale. ,E* between different surface conditions was calculated by the equation ,E* = [(,L*)2 + (,a*)2 + (,b*)2]1/2. Before polishing, CIE L* values with the SCE were significantly lower than those measured with the SCI. Before polishing, ,E* values depending on the measuring geometry were very high (3.78,5.93). However, those after polishing were lower than 1.61. CIE L* values increased after polishing (p < 0.05) with the SCE; however, they were not changed with the SCI. ,E* values between Mylar-covered and 600-grit polished specimens were 4.20,5.99 with the SCE and 0.27,1.46 with the SCI. Measurement with the SCE geometry may result in accurate color determination, which reflects the surface conditions of dental restorative materials. ,E* values measured with the SCE between the specimens of different surface conditions were significantly higher than those with the SCI (p < 0.05). © 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 657,663, 2002 [source]


Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Eric A. Sribnick
Abstract Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g · cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-,B translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. © 2010 Wiley-Liss, Inc. [source]


Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2010
Junichi Yamane
Abstract Delayed transplantation of neural stem/progenitor cells (NS/PCs) into the injured spinal cord can promote functional recovery in adult rats and monkeys. To enhance the functional recovery after NS/PC transplantation, we focused on galectin-1, a carbohydrate-binding protein with pleiotropic roles in cell growth, differentiation, apoptosis, and neurite outgrowth. Here, to determine the combined therapeutic effect of NS/PC transplantation and galectin-1 on spinal cord injury (SCI), human NS/PCs were transfected by lentivirus with galectin-1 and green fluorescent protein (GFP), (Gal-NS/PCs) or GFP alone (GFP-NS/PCs), expanded in vitro, and then transplanted into the spinal cord of adult common marmosets, 9 days after contusive cervical SCI. The animals' motor function was evaluated by their spontaneous motor activity, bar grip power, and performance on a treadmill test. Histological analyses revealed that the grafted human NS/PCs survived and differentiated into neurons, astrocytes, and oligodendrocytes. There were significant differences in the myelinated area, corticospinal fibers, and serotonergic fibers among the Gal-NS/PC, GFP-NS/PC, vehicle-control, and sham-operated groups. The Gal-NS/PC-grafted animals showed a better performance on all the behavioral tests compared with the other groups. These findings suggest that Gal-NS/PCs have better therapeutic potential than NS/PCs for SCI in nonhuman primates and that human Gal-NS/PC transplantation might be a feasible treatment for human SCI. © 2010 Wiley-Liss, Inc. [source]


Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2009
Seung I. Lee
Abstract Transplantation of neural stem cells (NSCs) has shown promise for improving functional recovery after spinal cord injury (SCI). The inhospitable milieu of injured spinal cord, however, does not support survival of grafted NSCs, reducing therapeutic efficacy of transplantation. The present study sought to examine whether overexpression of antiapoptotic gene Bcl-XL in NSCs could promote graft survival and functional recovery following transplantation in rat contusive SCI model. A human NSC line (HB1.F3) was transduced with a retroviral vector encoding Bcl-XL to generate Bcl-XL -overexpressing NSCs (HB1.F3.Bcl-XL). Overexpression of Bcl-XL conferred resistance to staurosporine-mediated apoptosis. The number of HB1.F3.Bcl-XL cells was 1.5-fold higher at 2 weeks and 10-fold higher at 7 weeks posttransplantation than that of HB1.F3 cells. There was no decline in the number of HB1.F3.Bcl-XL cells between 2 and 7 weeks, indicating that Bcl-XL overexpression completely blocked cell death occurring between these two time points. Transplantation of HB1.F3.Bcl-XL cells improved locomotor scores and enhanced accuracy of hindlimb placement in a grid walk. Approximately 10% of surviving NSCs differentiated into oligodendrocytes. Surviving NSCs produced brain-derived neurotrophic factor (BDNF), and the level of BDNF was significantly increased only in the HB1.F3.Bcl-XL group. Transplantation of HB1.F3.Bcl-XL cells reduced cavity volumes and enhanced white matter sparing. Finally, HB1.F3.Bcl-XL grafts enhanced connectivity between the red nucleus and the spinal cord below the lesion. These results suggest that enhancing graft survival with antiapoptotic gene can potentiate therapeutic benefits of NSC-based therapy for SCI. © 2009 Wiley-Liss, Inc. [source]


Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, Tempol, on synaptic or nonsynaptic mitochondria after spinal cord injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2009
Samir P. Patel
Abstract We recently documented the progressive nature of mitochondrial dysfunction over 24 hr after contusion spinal cord injury (SCI), but the underlying mechanism has not been elucidated. We investigated the effects of targeting two distinct possible mechanisms of mitochondrial dysfunction by using the mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) or the nitroxide antioxidant Tempol after contusion SCI in rats. A novel aspect of this study was that all assessments were made in both synaptosomal (neuronal)- and nonsynaptosomal (glial and neuronal soma)-derived mitochondria 24 hr after injury. Mitochondrial uncouplers target Ca2+ cycling and subsequent reactive oxygen species production in mitochondria after injury. When 2,4-DNP was injected 15 and 30 min after injury, mitochondrial function was preserved in both populations compared with vehicle-treated rats, whereas 1 hr postinjury treatment was ineffective. Conversely, targeting peroxynitrite with Tempol failed to maintain normal bioenergetics in synaptic mitochondria, but was effective in nonsynaptic mitochondria when administered 15 min after injury. When administered at 15 and 30 min after injury, increased hydroxynonenal, 3-NT, and protein carbonyl levels were significantly reduced by 2,4-DNP, whereas Tempol only reduced 3-NT and protein carbonyls after SCI. Despite such antioxidant effects, only 2,4-DNP was effective in preventing mitochondrial dysfunction, indicating that mitochondrial Ca2+ overload may be the key mechanism involved in acute mitochondrial damage after SCI. Collectively, our observations demonstrate the significant role that mitochondrial dysfunction plays in SCI neuropathology. Moreover, they indicate that combinatorial therapeutic approaches targeting different populations of mitochondria holds great potential in fostering neuroprotection after acute SCI. © 2008 Wiley-Liss, Inc. [source]


Thermomechanical properties of virgin and recycled polypropylene impact copolymer/CaCO3 nanocomposites

POLYMER ENGINEERING & SCIENCE, Issue 10 2010
A. Elloumi
The effect of successive injection moldings on the thermal, rheological, and mechanical properties of a polypropylene impact copolymer (PP) was investigated. The crystal content decreased as the molecular weight decreased due to chain scission with repeated injection molding. The Young modulus and the yield stress remained constant, despite a drop in the strain to break. Virgin and recycled PP matrix were filled with nanosized calcium carbonate (CaCO3) particles. The effect of morphology on the thermal and mechanical properties of nanocomposites of virgin and recycled PP filled with nanosized CaCO3 particles was also studied. The mechanical properties of the nanocomposites were strongly influenced by the intrinsic toughness of the matrix and the concentration and dispersion of the filler. The yield strength and strain of virgin PP decreased gradually, while its Young's modulus increased slightly with increasing CaCO3 loading. These phenomena were less pronounced for the recycled matrix. Incorporation of nanoparticles to virgin matrix produced an increase in tensile stiffness and ductility, when good dispersion of the filler was achieved. However, the impact strength dropped dramatically for high filler contents. A significant increase in impact strength was observed for the recycled PP. POLYM. ENG. SCI., 50:1904,1913, 2010. © 2010 Society of Plastics Engineers [source]


Effectual dispersion of carbon nanofibers in polyetherimide composites and their mechanical and tribological properties

POLYMER ENGINEERING & SCIENCE, Issue 10 2010
Bin Li
The use of proliferation of nanotechnology in commercial applications is driving requirements for minimal chemical processing and simple processes in industry. Carbon nanofiber (CNF) products possess very high purity levels without the need of purification processing before use and are in growing demand for this quality. Polyetherimide (PEI) has excellent mechanical and thermal performance, but its high viscosity makes its nanocomposites processing very challenging. In this study, a facile melt-mixing method was used to fabricate PEI nanocomposites with as received and physically treated CNFs. The dispersion of CNFs was characterized by scanning electron microscopy, transmitted optical microscopy, and electrometer with large-area electrodes. The results showed that the facile and powerful melt-mixing method is effective in homogeneously dispersing CNFs in the PEI matrix. The flexural and tribological characteristics were investigated and the formation of spatial networks of CNFs and weak interfacial bonding were considered as competitive factors to enhanced flexural properties. The composites with 1.0 wt% CNFs showed flexural strength and toughness increased by more than 50 and 550%, respectively, but showed very high wear rate comparable with that of pure PEI. The length of the CNFs also exerted great influences on both mechanical and tribological behaviors. POLYM. ENG. SCI., 50:1914,1922, 2010. © 2010 Society of Plastics Engineers [source]


A comparison of seven filling to packing switchover methods for injection molding

POLYMER ENGINEERING & SCIENCE, Issue 10 2010
David O. Kazmer
The effectiveness of seven methods for controlling switchover from the filling to packing stage were investigated, including: (1) screw position, (2) injection time, (3) machine pressure, (4) nozzle pressure, (5) runner pressure near the sprue, (6) cavity pressure near the gate, and (7) cavity temperature at the end of flow. The activation threshold for each of the seven switchover methods was iteratively determined so as to produce similar part weights relative to a standard process. A design of experiments was implemented for each of the seven switchover methods that perturbs the process settings by an amount equal to six standard deviations of the standard process so as to replicate the expected long-term process variation. The results suggest that conventional switchover methods (e.g., screw position) had lower short-term variation, but other methods were more robust with respect to rejecting long-term process variation. The merits of different dimensional measurements for quality control are also discussed relative to the society of the plastics industry (SPI) standard tolerances. POLYM. ENG. SCI., 50:2031,2043, 2010. © 2010 Society of Plastics Engineers [source]


Numerical modeling of nonisothermal polymer crystallization kinetics: Flow and thermal effects

POLYMER ENGINEERING & SCIENCE, Issue 10 2010
Matthieu Zinet
A numerical model able to simulate polymer crystallization under nonisothermal flows is developed. It is based on the assumption that the trace of the extra-stress tensor, calculated according to a viscoelastic multimode Upper Convected Maxwell (UCM) model, is the driving force of the flow-induced extra nucleation. Two distinct sets of Schneider equations are used to describe the growth of thermally and flow induced nuclei. The model is then coupled with the momentum equations and the energy equation. As an application, a shear flow configuration between two plates (Couette flow) is simulated. The relative influence of the mechanical and thermal phenomena on the crystallization development as well as the final morphology distribution is then analyzed as a function of the shearing intensity and the cooling kinetics, in terms of nucleation density and crystallite mean sizes. POLYM. ENG. SCI., 50:2044,2059, 2010. © 2010 Society of Plastics Engineers [source]


Process of grafting styrene onto LLDPE by swelling and suspension copolymerization

POLYMER ENGINEERING & SCIENCE, Issue 9 2010
Jing Yan
A technology of swelling and suspension copolymerization was conducted to graft styrene onto linear low-density polyethylene (LLDPE). The graft mechanism of styrene with LLDPE had been described by 1H NMR and IR. The mean particle diameter and size distribution of the products with different proportions of LLDPE to styrene monomer were calculated. The morphology and thermal behavior of copolymers were characterized by scanning electron microscopy and differential scanning calorimetry. The glass transition temperature of copolymers increased with the addition of LLDPE, which proved the existence of the polyethylene- g -polystyrene copolymer. The grafting efficiency and granulation rate of suspension copolymerization were investigated. It was found that the grafting efficiency increased and the granulation rate decreased with the addition of LLDPE. POLYM. ENG. SCI., 50:1713,1720, 2010. © 2010 Society of Plastics Engineers [source]


Crystallization and biodegradation of polylactide/carbon nanotube composites

POLYMER ENGINEERING & SCIENCE, Issue 9 2010
Defeng Wu
The crystallization behavior of polylactide/carbon nanotube composites was studied using differential scanning calorimeter and polarized optical microscope. The nucleation mechanisms and the crystallization kinetics were explored. The results show that the presence of nanotubes has nucleating effect on both the melt crystallization and the cold crystallization of PLA. However, the nanotubes also play the role of physical barrier, impeding the crystal growth dynamically. In the experimental range of temperatures, the presence of nanotubes accelerates the melt crystallization, while retards the overall kinetics of the cold crystallization. The biodegradability of the samples with various crystallization histories was then further examined. The results show that the presence of nanotubes reduces the biodegradation rate of PLA, and the amorphous sample shows the highest degradation levels. Moreover, a lower degradation level is observed both on the surface and inside the sample with melt crystallization history in contrast to the one with cold crystallization history. POLYM. ENG. SCI., 50:1721,1733, 2010. © 2010 Society of Plastics Engineers [source]


Dynamic mechanical properties and morphology of poly(benzyl methacrylate)/epoxy thermoset blends

POLYMER ENGINEERING & SCIENCE, Issue 9 2010
Margarita G. Prolongo
Poly(benzyl methacrylate) (PBzMA)/epoxy thermoset blends of composition 5 to 25 wt% of PBzMA were prepared curing with 4,4,diaminodiphenylmethane (DDM), to study the influence of composition on the morphology and dynamic-mechanical properties of the blends. The cured blends are phase separated in PBzMA-rich phase and epoxy rich-phase. As the PBzMA content increases, the morphology evolves from nodular, to combined and to totally inverted. The analysis of the ,-mechanical relaxations indicates that the glass transition temperatures (Tg) of PBzMA and of epoxy in the blends are different from the neat polymers, this is related to a noncomplete phase separation on curing. The profiles of the loss modulus-temperature curves are correlated with the change in morphology that appears increasing the PBzMA content. The storage modulus-temperature curves are highly dependent on the morphology of the samples. The storage modulus-composition dependence is predicted using several models for two phase composites. POLYM. ENG. SCI., 50:1820,1830, 2010. © 2010 Society of Plastics Engineers [source]


Influence of initial mixing methods on melt-extruded single-walled carbon nanotube,polypropylene nanocomposites

POLYMER ENGINEERING & SCIENCE, Issue 9 2010
Vinod K. Radhakrishnan
We report the first direct comparison of melt-extruded polypropylene,single-walled carbon nanotube (PP/SWNT) nanocomposites prepared by three different initial mixing methods. The standard deviation of the G-band intensity obtained using Raman mapping was found to be the best measure of dispersion uniformity in the extruded composites, and dispersion uniformity was found to generally correlate with rheological and thermal properties. For all three initial mixing methods, both unmodified and sidewall-functionalized purified SWNTs were evaluated. Surprisingly, in all cases, dodecylated SWNTs prepared using the reductive alkylation method were less uniformly dispersed in the final composite than the unmodified SWNTs. The simplest process, dry blending, resulted in poor nanotube dispersion and only polymer crystallization was significantly affected by the presence of the nanotubes. A slightly more complex rotary evaporation process resulted in significantly more uniform dispersion and significant changes in rheological properties, polymer crystallization, and thermal stability. The most elaborate process tested, hot coagulation, enabled the most uniform dispersion and the greatest change in properties but also resulted in some polymer degradation. POLYM. ENG. SCI., 50:1831,1842, 2010. © 2010 Society of Plastics Engineers [source]


Effect of plasma treatment and electron beam radiations on the strength of nanofilled adhesive-bonded joints

POLYMER ENGINEERING & SCIENCE, Issue 8 2010
H.M.S. Iqbal
This investigation highlights the adhesion performance of carbon fiber- and glass fiber-reinforced polyphenylene sulfide when joined by high-performance neat epoxy adhesive and nanofilled epoxy adhesive. A significant increase in the surface energy of these materials is observed after the surface modification with atmospheric plasma treatment. An increase in surface roughness is observed after exposing the surface to plasma. Lap shear testing of untreated and plasma-treated joints is carried out to correlate the improvement in adhesion properties with the joint strength. A considerable increase in joint strength is observed when the surfaces of these materials are modified by atmospheric pressure plasma. There is a further increase in joint strength when the composites are joined by nanofilled epoxy adhesive, and subsequent exposure to electron beam radiations results in minor increase in the joint strength. Finally, the fractured surfaces of the joints are examined and the analysis is performed. POLYM. ENG. SCI., 50:1505,1511, 2010. © 2010 Society of Plastics Engineers [source]


Compatibilization of PP/PAE blends by means of the addition of an ionomer

POLYMER ENGINEERING & SCIENCE, Issue 8 2010
A. Granado
Minor amounts of poly(ethylene- co -methacrylic acid) ionomer neutralized with Zn (PEMA-Zn) were added in the melt state to blends of polypropylene (PP) with up to 40% of poly(amino ether) (PAE) resin. Given the good barrier characteristics of PAE, it is a good candidate to improve the poor barrier properties of PP. However, PP/PAE blends were found to be almost fully immiscible, with a large dispersed phase size and a brittle mechanical behavior. Upon PEMA-Zn addition, the dispersed particle size clearly decreased from diameters of several microns to diameters mostly below 0.5 ,m, indicating that compatibilization occurred. This compatibilization was due to the presence of PEMA-Zn in the two phases of the blends and was additionally proven by the large decrease observed in the interfacial tension. Further, the fine morphology led to an enhancement in the unnotched impact strength of the ternary blends and of their ductile behavior (elongation at break 30- to 40-fold that of the corresponding binary blends). POLYM. ENG. SCI., 50:1512,1519, 2010. © 2010 Society of Plastics Engineers [source]


Dielectric properties of polyethylene terephthalate/polyphenylene sulfide/barium titanate nanocomposite for application in electronic industry

POLYMER ENGINEERING & SCIENCE, Issue 8 2010
Monika Konieczna
Polymer/ceramic nanocomposites designed for application as electronic packaging were prepared using corotating twin-screw extruder. The dielectric properties of the composites made from polyethylene terephthalate (PET), polyphenylene sulfide, and barium titanate were studied as a function of BaTiO3 fraction in the range between 0.75 and 1.5 wt%. Processing parameters were optimized in order to obtain the nanocomposites with appropriate dielectric properties like dielectric permittivity ,,, dielectric losses ,,, and their temperature stability in a wide frequency range. The measurements showed the increase of the dielectric permittivity value ,, in the composites in comparison to both pure polymers. The dielectric loss factor tg, of the composites was found to be much smaller than that of the pure PET. The weak influence of the ceramics on the temperature stability of the dielectric properties of the composites was stated. POLYM. ENG. SCI., 50:1613,1619, 2010. © 2010 Society of Plastics Engineers [source]


Maleated amorphous ethylene propylene compatibilized polyethylene nanocomposites: Room temperature nonlinear creep response

POLYMER ENGINEERING & SCIENCE, Issue 8 2010
Ali Shaito
Nonlinear creep of polyethylene and its nanocomposites remains an area of significant interest. Maleated polyethylene is often used as a compatibilizer to ensure enhanced dispersion. This article investigates blown films of linear low-density polyethylene and its nanocomposites with montmorillonite-layered silicate (MLS). An amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was added to enhance the interaction between the PE and the MLS. Tensile results indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE. Nonlinear creep was analyzed by examining creep and recovery of the films with a Burger model and the Kohlrausch-Williams-Watts relation. A consistent decrease in unrecoverable plastic strain was obtained in the nanocomposite samples. A decreased retardation time associated with MLS presence was determined. POLYM. ENG. SCI., 50:1620,1632, 2010. © 2010 Society of Plastics Engineers [source]


Gel-spun polyacrylonitrile fiber from pregelled spinning solution

POLYMER ENGINEERING & SCIENCE, Issue 7 2010
Lianjiang Tan
Polyacrylonitrile (PAN) fibers have been gel spun from pregelled PAN spinning solution. The pregelled solution had network structure with elevated spinnability, the as-spun fiber from which had more circular cross-section and reduced skin-core difference. Drawing was more effective in inducing the segmental orientation and crystallization in gel-spun fiber than in dry,wet spun fiber. The mechanical properties of the gel-spun fiber were better than those of the dry,wet spun fiber after multi-stage drawing. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Changes in lamellar arrangement of crystalline and flexible fluorinated transparent films with drawing

POLYMER ENGINEERING & SCIENCE, Issue 7 2010
Atsuhiro Fujimori
In recent times, a "crystalline" and flexible optical waveguide candidate with excellent heat-resistance and dimensional stability are developed. For the practical use of this crystalline optical film in the near future, an accurate control of the solid-state structure is indispensable because of the necessity of reducing light refraction at the crystalline/amorphous interface. In this study, changes in the fine structure and lamella arrangement upon drawing poly[tetrafluoroethylene- co -(perfluoroethylvinylether)] (EFA) transparent crystalline films were investigated by using wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) methods. The EFA was crystallized as a lamella crystal in the films and formed a thicker lamella. Upon the drawing of the EFA films, four-point SAXS diagrams developed in the photograph at through direction to the film, which implied that a particular type of layer structure, an alternately tilted lamella arrangement known as the herringbone, was formed. From the result of WAXD and SAXS measurements at edge direction to the film, it is found that formation of isotropic disordered lamella arrangement. Therefore, it is indicated that three-dimensional lamella arrangement in this fluorinated transparent film forms uniaxially cylindrical symmetry. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Reinforcement of liquid ethylene,propylene,dicyclopentadiene copolymer based elastomer with vinyl functionalized multiwalled carbon nanotubes

POLYMER ENGINEERING & SCIENCE, Issue 7 2010
Hongfu Zhou
A methodology for reinforcement of liquid ethylene,propylene,dicyclopentadiene copolymer (liquid-EPDM) based elastomer with multiwalled carbon nanotubes (MWCNTs) was proposed. Acid-treated MWCNTs were first reacted with poly(acryloyl chloride) (PACl) leading to a grafted encapsulation, which were subsequently reacted with hydroxy ethyl acrylate (HEA) to generate vinyl groups. Thus obtained vinyl groups functionalized MWCNTs (vinyl-MWCNTs) were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The vinyl-MWCNTs were blended with liquid-EPDM and subjected to co-curing; an intercrosslinked structure was obtained via the free radical polymerization among the vinyl groups on vinyl-MWCNTs and the double bonds on liquid-EPDM. As a result, the vinyl-MWCNTs and the cured EPDM matrix were covalently linked. The chemical interfacial interaction between vinyl-MWCNTs and the cured matrix were observed by scanning electron microscope, which provided obvious reinforcement of elastomer. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Simulations of instability in fiber spinning of polymers

POLYMER ENGINEERING & SCIENCE, Issue 7 2010
Atanas Gagov
This work determines the critical regimes beyond which the melt fiber spinning for noncrystallizable polymeric liquids becomes unstable. The critical draw ratio of the process is established using linear stability analysis for both isothermal and nonisothermal fiber spinning regimes. In addition, nonlinear isothermal analysis describes the complete range of the stable and unstable conditions for fiber spinning. Unlike previous studies, this research uses quite realistic viscoelastic constitutive equations extensively tested for five polymer liquids, which provides a good comparison of our calculations with available experimental data. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes

POLYMER ENGINEERING & SCIENCE, Issue 7 2010
Christopher D. McGrady
The effect of sparse long chain branching, LCB, on the shear step-strain relaxation modulus is analyzed using a series of eight high-density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time,strain separation beyond some characteristic time, ,k. The presence of LCB is observed to increase the value of ,k relative to the linear resin. The behavior of the relaxation modulus at times shorter than ,k is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to (1) increase with increasing strain in all resins, (2) be significantly larger in the sparsely branched HDPE resins relative to the linear HDPE resin, and (3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is also investigated. The finite rise time to impose the desired strain is compared to the Rouse relaxation time of linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Structural estimation of particle arrays at air,water interface based on silica particles with well-defined and highly grafted poly(methyl methacrylate)

POLYMER ENGINEERING & SCIENCE, Issue 6 2010
Jung-Min Moon
Silica nanoparticles with well-defined, highly grafted dense poly(methyl methacrylate) (MMA) were prepared by surface-initiated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of methyl methacrylate with an initiator-fixed silica particle in the presence of air. Two different polymerizations of MMA were carried out under the same conditions using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and N,N,N,,N,,N,-pentamethyldiethylene-triamine (PMDETA) as the ligand, respectively. In the CuCl2/PMDETA system, polymerization appeared to be more controlled with a lower polydisperisty compared with the CuCl2/Me6TREN system. The monolayer of these particles was formed at the air,water interface using Langmuir-Blodgett (LB) technique. Multilayers of the particles were fabricated by repetition of LB depositing. A surface pressure,area (,,A) measurement and SEM observation were used to characterize the particle arrays. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]


The effects of alumina and silica nanoparticles on the cure kinetics of bisphenol E cyanate ester

POLYMER ENGINEERING & SCIENCE, Issue 6 2010
Xia Sheng
Nanoparticles can be used as fillers to reinforce polymers, forming nanocomposites with better thermomechanical properties than composites with macrosized fillers. Furthermore, the addition of nanoparticles may influence the curing behavior of the polymer matrix during processing. In this study, the effect of various loadings of alumina or silica nanoparticles on the cure kinetics of bisphenol E cyanate ester (BECy) is investigated by differential scanning calorimetry (DSC). Alumina nanoparticles are shown to have a catalytic effect on the cure of BECy. The greater catalytic effect of alumina nanoparticles, compared with silica, is attributed to the increased number of hydroxyl groups on the surface and the Lewis acidity of ,-phase alumina. Kinetic parameters were obtained from dynamic DSC experiments. For an autocatalytic model of the cure process, the kinetic parameters obtained from the model suggest that the addition of alumina nanoparticles changed the cure reaction mechanism of BECy. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]


Synthesis and characterization of poly(butyl acrylate- co -ethylhexyl acrylate)/ poly(vinyl chloride)[P(BA-EHA)/PVC] novel core-shell modifier and its impact modification for a poly(vinyl chloride)-based blend

POLYMER ENGINEERING & SCIENCE, Issue 6 2010
Mingwang Pan
Synthesis of poly(butyl acrylate-co-ethylhexyl acrylate)-core/poly(vinyl chloride)-shell [P(BA-EHA)/PVC] used as a modifying agent of PVC via semicontinuous seeded emulsion copolymerization is reported here. Diameter distributions and morphology of the composite latex particles were characterized with the aid of particle size analyzer and transmission electron microscopy (TEM). The grafting efficiency (GE) and grafting ratio (GR) of vinyl chloride (VC) grafted onto the P(BA-EHA) with varying content of crosslinking agent and core-shell ratios were investigated. TEM studies indicated that the P(BA-EHA)/PVC latex particles have core-shell structure, and the P(BA-EHA) rubbery particles in blending materials were uniformly dispersed in PVC matrix. Dynamic mechanical analysis (DMA) results revealed that the compatibility between the P(BA-EHA) and the PVC matrix was significantly improved due to the presence of the P(BA-EHA)-grafted-VC copolymer. The notched impact strength of the blending material with 3 wt% of rubber content was seven times that of the PVC. Linear regressions of mechanical properties as loading of the modifier were made. The resulting data of notched impact strength and elongation at break for the blending materials deviated significantly from regression lines within 3,4.5 wt% of the P(BA-EHA) content. The PVC blends modified by the modifier exhibited good toughness and easy processability. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]


Effect of polyethylene oxide,polyethylene glycol content and humidity on performance of electro-active paper actuators based on cellulose/polyethylene oxide,polyethylene glycol microcomposite

POLYMER ENGINEERING & SCIENCE, Issue 6 2010
Suresha K. Mahadeva
The effect of humidity and polyethylene oxide (PEO),polyethylene glycol (PEG) content on the actuator performance of cellulose/PEO,PEG microcomposites was studied. Upon blending 5% PEO,PEG, the maximum bending displacement of the actuator increased nearly twice compared to that of cellulose EAPap actuator. However, further increase of PEO,PEG content resulted in decreased actuator performance. This might be due to the increased intermolecular interaction by hydrogen bonding that reduces the mobility of the molecules. The actuator performance test showed that the increase in humidity level rather reduced the maximum displacement of the actuators. X-ray diffractogram and Fourier transform infrared spectrum analysis suggested a structural change of the microcomposites as well as disruption of cellulose/PEO,PEG association attributed to the actuator performance degradation at high humidity level. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Effects of film and substrate dimensions on warpage of film insert molded parts

POLYMER ENGINEERING & SCIENCE, Issue 6 2010
Seong Yun Kim
Three-dimensional flow and structural analyses were carried out for film insert injection molding to investigate warpage of film insert molded (FIM) parts with respect to variation of film and substrate thickness. Asymmetry of temperature distribution in the thickness direction was increased with increasing film thickness but decreased with increasing substrate thickness. Asymmetry of the in-mold residual stress distribution in the FIM specimen was generated by the nonuniform temperature distribution, and it was increased with increasing film thickness but reduced with increasing substrate thickness. Warpage of the ejected FIM specimen was determined by relaxation of the asymmetric in-mold residual stress distribution, and it was increased with increasing film thickness but reduced with increasing substrate thickness. Warpage of FIM specimens annealed at 80°C for 30 min showed complex behavior, and the behavior was understood by using factors such as degree of warpage of the ejected part, thermal shrinkage of the inserted film, and retardation of heat transfer. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]