Sciatic Nerve Transection (sciatic + nerve_transection)

Distribution by Scientific Domains


Selected Abstracts


Dynamic changes in glypican-1 expression in dorsal root ganglion neurons after peripheral and central axonal injury

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
Stefan Bloechlinger
Abstract Glypican-1, a glycosyl phosphatidyl inositol (GPI)-anchored heparan sulphate proteoglycan expressed in the developing and mature cells of the central nervous system, acts as a coreceptor for diverse ligands, including slit axonal guidance proteins, fibroblast growth factors and laminin. We have examined its expression in primary sensory dorsal root ganglion (DRG) neurons and spinal cord after axonal injury. In noninjured rats, glypican-1 mRNA and protein are constitutively expressed at low levels in lumbar DRGs. Sciatic nerve transection results in a two-fold increase in mRNA and protein expression. High glypican-1 expression persists until the injured axons reinnervate their peripheral targets, as in the case of a crushed nerve. Injury to the central axons of DRG neurons by either a dorsal column injury or a dorsal root transection also up-regulates glypican-1, a feature that differs from most DRG axonal injury-induced genes, whose regulation changes only after peripheral and not central axonal injury. After axonal injury, the cellular localization of glypican-1 changes from a nuclear pattern restricted to neurons in noninjured DRGs, to the cytoplasm and membrane of injured neurons, as well as neighbouring non-neuronal cells. Sciatic nerve transection also leads to an accumulation of glypican-1 in the proximal nerve segment of injured axons. Glypican-1 is coexpressed with robo 2 and its up-regulation after axonal injury may contribute to an altered sensitivity to axonal growth or guidance cues. [source]


NGF and GDNF ameliorate the increase in ATF3 expression which occurs in dorsal root ganglion cells in response to peripheral nerve injury

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2004
Sharon Averill
Abstract Activating transcription factor-3 (ATF3) is a member of the ATF/CREB transcription factor superfamily and is induced in dorsal root ganglion (DRG) cells after nerve injury. In order to study the regulation of ATF3, we have examined the effect of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on ATF3 expression. In untreated rats, sciatic nerve transection induced ATF3 immunoreactivity in 82% of L4 DRG cells at 14 days after axotomy. Intrathecal delivery of NGF or GDNF for 2 weeks commencing immediately after injury reduced the ATF3 expression to 35 and 23% of DRG cells, respectively. Cell size analysis indicated that NGF had protected a population of mainly small- to medium-sized cells, but that the GDNF had protected a population of both small and large cells. This effect was confirmed by double labelling for P2X3, CGRP and 200 kDa neurofilament, markers for small peptide-poor cells, peptide-rich cells and large cells, respectively. Thus GDNF reduced the percentage of ATF3-immunoreactive P2X3 cells from 70 to 4%, and the percentage of ATF3-immunoreactive neurofilament cells from 63 to 24%. NGF was less effective than GDNF in reducing ATF3 expression in these cell types, but reduced the percentage of ATF3-immunoreactive CGRP cells from 10% to <,1%. These results show that ATF3 expression in specific populations of DRG cells can be modulated by exogenous supplementation of specific trophic factors, and suggest that ATF3 expression may normally be induced by the loss of target-derived NGF and GDNF. [source]


Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Petrica-Adrian Panaite
Abstract Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine ,-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission. © 2010 Wiley-Liss, Inc. [source]


A tissue-engineered suburethral sling in an animal model of stress urinary incontinence

BJU INTERNATIONAL, Issue 4 2005
Tracy W. Cannon
OBJECTIVE To create and evaluate the functional effects of a tissue-engineered sling in an animal model of stress urinary incontinence (SUI). MATERIALS AND METHODS Twenty female Sprague-Dawley rats were divided into four equal groups: a control group (C) had no intervention before the leak-point pressure (LPP) was measured; a denervated group (D) had bilateral proximal sciatic nerve transection (PSNT) and periurethral dissection with no sling placed; group S had concomitant bilateral PSNT and a suburethral sling of small intestinal submucosa (SIS) placed; and group (M) had concomitant bilateral PSNT with implantation of a tissue-engineered sling. The suburethral sling was placed via a transabdominal approach with the sling sutured to the pubic bone. Tissue-engineered slings were prepared with muscle-derived cells obtained via the pre-plate technique and subsequently seeded for 2 weeks on a SIS scaffold. Suburethral slings were implanted 2 weeks before LPP testing, using the vertical-tilt method. RESULTS Surgically placing a suburethral sling is feasible in the female rat, with few complications. LPPs from both sling groups (S and M) were not significantly different from untreated controls (C). The S, M and C groups all had significantly higher LPPs than group D. Importantly, no rat from either sling group (S and M) had signs of urinary retention. CONCLUSIONS Placing tissue-engineered slings in an animal model of SUI resulted in LPP values that were not significantly different from those in untreated control or SIS (S) groups. These data show that incorporating muscle stem cells into SIS slings does not adversely alter the advantageous mechanical properties of the SIS sling in a model of SUI, and provide the basis for future functional studies of tissue-engineered sling materials with long-term retention. [source]