Home About us Contact | |||
Savanna Habitats (savanna + habitat)
Selected AbstractsThe irreversible cattle-driven transformation of a seasonally flooded Australian savannaJOURNAL OF BIOGEOGRAPHY, Issue 5 2003Ben R. Sharp Abstract Aim ,Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land-use, conservation management, and landscape-scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location ,The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods ,Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground-truth air-photo results and determine the nature and causes of observed vegetation changes. Results ,There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid-1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non-flammable; what fires do burn are small and of low intensity. Main conclusions ,Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid-1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable-state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems. [source] Home range and habitat use by cheetahs (Acinonyx jubatus) in the Kruger National ParkJOURNAL OF ZOOLOGY, Issue 2 2003L. S. Broomhall Abstract Cheetah Acinonyx jubatus home-range size and habitat use were analysed using radio-tracking data collected in the southern district of the Kruger National Park (KNP) between 1987 and 1990. Meaningful estimates of home-range size, using the 95% minimum convex polygon method, were 126 km2 for a three-male cheetah coalition, 195 km2 for a solitary male, and 150 km2 and 171 km2 for two female cheetahs. Although cheetahs used all habitats according to their availability, they did show a preference for open savanna habitat because their core or total home ranges centred on these habitats. Female cheetahs used denser woodland habitat more frequently than males, as they seemed to be influenced by the distribution of their main prey, impala Aepyceros melampus, which also preferred denser woodland habitat. [source] The irreversible cattle-driven transformation of a seasonally flooded Australian savannaJOURNAL OF BIOGEOGRAPHY, Issue 5 2003Ben R. Sharp Abstract Aim ,Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land-use, conservation management, and landscape-scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location ,The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods ,Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground-truth air-photo results and determine the nature and causes of observed vegetation changes. Results ,There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid-1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non-flammable; what fires do burn are small and of low intensity. Main conclusions ,Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid-1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable-state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems. [source] Shallow-water habitats as sources of fallback foods for homininsAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009Richard Wrangham Abstract Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins. Am J Phys Anthropol 140:630,642, 2009. © 2009 Wiley-Liss, Inc. [source] The termite (Isoptera) fauna of a monsoonal rainforest near Darwin, northern AustraliaAUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2005Tracy Z Dawes-Gromadzki Abstract, Termite species richness, frequency of occurrence and functional diversity at Holmes Jungle Nature Reserve, a monsoon rainforest patch in northern Australia, was investigated at the end of the wet season in 2003. A sampling protocol that employed direct search, soil pits and baiting techniques was used to sample litter, wood, mound, soil and arboreal nest microhabitats for termites. Five species from five genera and three families (Mastotermitidae, Rhinotermitidae and Termitidae) were recorded. This included the first record of Ephelotermes taylori (Hill) from monsoon forest in Australia. The family Termitidae was dominant and represented 70% of termite occurrences. Termites were most frequently encountered in carton runways on tree trunks, followed by lying dead wood and baits. Four nesting habits were represented: arboreal, epigeal, hypogeal and within wood. The arboreal nest-builder Nasutitermes graveolus (Hill) accounted for 61% of termite encounters. Epigeal mound-building species were rare. Wood-feeders were the only trophic group represented. Relatively high activity of Mastotermes darwiniensis Froggatt was recorded at baits within 2.5 months. The low species richness recorded at Holmes Jungle is consistent with the low diversity reported for Australian rainforests generally, but remains relatively depauperate compared with other monsoon forest and savanna habitats of the Northern Territory. [source] |