Same Stream (same + stream)

Distribution by Scientific Domains


Selected Abstracts


Digital switchover in UHF: the ATHENA concept for broadband access

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 2 2006
Evangelos Pallis
This paper presents a concept adopted by ATHENA IST-507312 project for the proper adoption of digital switchover (DSO) in UHF, towards establishing broadband access especially in rural and less favoured regions. Taking into account the local and networking capabilities of terrestrial digital video broadcasting standard (DVB-T), and by building on three pillars (a) the regenerative DVB-T concept, (b) the backhaul configurations and (c) the ,bit-rate allocation' aspect rather than the ,frequency allocation' one, it designs, implements and validates a broadband Fusion environment, which is capable of enabling access not only to digital TV bouquets, but also and most predominant to Information Society services, such as Internet, e-mail, multimedia on demand etc. within the same stream. Citizens access them via intermediate distribution nodes, namely cell main nodes (CMNs). Such a Fusion environment is commonly shared among broadcasters, telecom operators and active users/citizens, for open competition in technological and service level, in content creation and delivery level, in networking business/market field. Finally, the paper elaborates on the potentialities of the DSO in UHF to provide not only digital TV bouquets, but also a broadband access Fusion environment in regional level. Copyright © 2006 AEIT. [source]


Ontogenetic changes in the drifting of four species of elmid beetles elucidate the complexity of drift-benthos relationships in a small stream in Northwest England

FRESHWATER BIOLOGY, Issue 1 2008
J. M. ELLIOTT
Summary 1. This study aimed to quantify ontogenetic changes in the drifting of Elmis aenea, Oulimnius tuberculatus, Esolus parallelepipedus and Limnius volkmari (Coleoptera: Elmidae), and to relate their drift to benthic density. Monthly samples were taken over 39 months, using three surface nets at each of two contrasting sites in a small stream: one in a deep section with abundant macrophytes, and the other in a shallow stony section. 2. Most larvae and adults were taken in the drift at night with little variation between catches in the three nets at each site. Day catches were very low, often zero. No significant relationships could be established between mean numbers in the drift catches and benthic densities. 3. When night catches were converted to drift densities (number caught per 100 m3 of water sampled), the latter were positively related to monthly losses in the benthos, but not to benthic densities. A linear regression described the relationship, and equations for the different life-stages within each species were not significantly different from the equation for all life-stages combined. However, drift losses were only about 0.07% of total losses in the benthos. A severe spate in October 1967 increased the number of larvae and adults in the drift, but not drift densities, except for immature adults of E. aenea, O. tuberculatus and E. parallelepipedus. 4. Key life-stages with the highest drift density were the earliest life-stage soon after egg hatching for E. aenea, the start of the larval overwintering period for O. tuberculatus and L. volkmari, and mature adults during the mating season for all three species. Drift density for E. parallelepipedus was too low to identify a key life-stage. These key life-stages corresponded with critical periods for survival in the life cycle, as identified in an earlier study in the same stream. Mortality was high during these critical periods, hence the strong relationship between drift density and benthic losses. The latter relationship was very consistent for different life-stages within each species, and partially supported the rarely-tested hypothesis that drift represents surplus production in the benthos. [source]


Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams

FRESHWATER BIOLOGY, Issue 4 2007
JANE M. HUGHESArticle first published online: 2 MAR 200
Summary 1. The ,Field of Dreams Hypothesis' states ,if we build it, they will come', referring to the assumption that if habitats are restored, species will recolonise them. However, the ability of a species to recolonise a restored site will depend not only on the appropriate habitat being present, but also on the ability to get there. This is likely to depend on both the species' dispersal behaviour and the position of a site in the landscape. 2. Animals with good potential for dispersal are more likely to be able to disperse to newly restored sites. Similarly, sites in lowland streams with limited altitudinal differences between sites may be easier to reach than upstream sites. This is because upstream sites are connected to one another via lowland streams that have different characteristics and therefore may be difficult for animals to traverse. 3. In this paper, genetic data from a range of freshwater species that have been analysed in my laboratory are used to assess the importance of life cycle and position in the landscape (i.e. upland versus lowland streams) on connectivity patterns (and thus recolonisation potential) among populations. 4. In general, contemporary dispersal across catchment boundaries is negligible, except for aquatic insects with an adult flight stage. Dispersal among streams within catchments appears to be more limited than was predicted from knowledge on life histories, except for fish in lowland rivers and streams. 5. As predicted, dispersal of fish, crustaceans and molluscs among streams within catchments is significantly greater in lowland rivers than in upland streams. 6. Overall, these analyses suggest that, with the exception of most insects, and fishes in lowland rivers, natural recolonisation of restored sites is only likely from sites within the same stream. If a species has disappeared from the whole stream, then restoration of habitat alone may not be sufficient for its re-establishment. [source]


Determining long time-scale hyporheic zone flow paths in Antarctic streams

HYDROLOGICAL PROCESSES, Issue 9 2003
Michael N. Gooseff
Abstract In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11, D and 2·2, 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (,) generally an order magnitude lower (10,5 s,1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where ,fast' biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream-water chemistry at longer time-scales. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Stream Macroinvertebrate Community Affected by Point-Source Metal Pollution

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2007
Hideyuki Doi
Abstract The impacts of mining activities on aquatic biota have been documented in many stream ecosystems. In mining streams, point-source heavy metal pollution often appears in the stream. We hypothesize that this pollution is toxic to macroinvertebrates owing to high concentrations of metals and therefore affects macroinvertebrate community structure. We investigated macroinvertebrate community structure in mountain streams, including heavy metal-polluted sites and neutral-pH streams, to determine the relationship between community structure and environmental factors such as low pH and heavy metal concentrations. Based on multidimensional scaling ordination, the macroinvertebrate community at heavy metal pollution sites was remarkably different from that at the other sites. Inductively coupled plasma mass spectrometry revealed high concentrations of aluminum and iron in surface water at the polluted sites. Macroinvertebrate community structure at the metal pollution sites was significantly different from that at other sites in the same stream and in neutral-pH streams. Thus, point-source metal pollution may reduce the density and diversity of in situ macroinvertebrates. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The role of trout in stream food webs: integrating evidence from field surveys and experiments

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2006
KRISTIAN MEISSNER
Summary 1We evaluated the effects of brown trout on boreal stream food webs using field surveys and enclosure/exclosure experiments. Experimental results were related to prey preference of uncaged trout in the same stream, as well as to a survey of macroinvertebrate densities in streams with vs. without trout. Finally, we assessed the generality of our findings by examining salmonid predation on three groups of macroinvertebrate prey (chironomid midges, epibenthic grazers, invertebrate predators) in a meta-analysis. 2In a preliminary experiment, invertebrate predators showed a strong negative response to trout, whereas chironomids benefited from trout presence. In the main experiment, trout impact increased with prey size. Trout had the strongest effect on invertebrate predators and cased caddis larvae, whereas Baetis mayfly and chironomid larvae were unaffected. Trout impact on the largest prey seemed mainly consumptive, because prey emigration rates were low and independent of fish presence. Despite strong effects on macroinvertebrates, trout did not induce a trophic cascade on periphyton. Uncaged trout showed a strong preference for the largest prey items (predatory invertebrates and aerial prey), whereas Baetis mayflies and chironomids were avoided by trout. 3Densities of invertebrate predators were significantly higher in troutless streams. Baetis mayflies also were less abundant in trout streams, whereas densities of chironomids were positively, although non-significantly, related to trout presence. Meta-analysis showed a strong negative impact of trout on invertebrate predators, a negative but variable impact on mobile grazers (mainly mayfly larvae) and a slightly positive impact on chironomid larvae. 4Being size-selective predators, salmonid fishes have a strong impact on the largest prey types available, and this effect spans several domains of scale. Discrepancies between our experimental findings and those from the field survey and meta-analysis show, however, that for most lotic prey, small-scale experiments do not reflect fish impact reliably at stream-wide scales. 5Our findings suggest that small-scale experiments will be useful only if the experimental results are evaluated carefully against natural history information about the experimental system and interacting species across a wide array of spatial scales. [source]


Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2008
D. FONTANETO
Abstract Bdelloid rotifers, darwinulid ostracods and some oribatid mites have been called ,ancient asexuals' as they speciated and survived over long-term evolutionary timescale without sexual recombination. Data on their genetic diversification are contrasting: within-species diversification is present mostly at a continental scale in a parthenogenetic oribatid mite, whereas almost no genetic diversification at all seems to occur within darwinulid ostracod species. Strangely enough, no clear data for bdelloid rotifers are available so far. In this paper, we analyse partial COI mtDNA sequences to show that a bdelloid rotifer, Philodina flaviceps, so far considered a single traditional morphological species, has actually been able to diversify into at least nine distinct evolutionary entities, with genetic distances between lineages comparable with those between different traditional species within the same genus. We discovered that local coexistence of such different independent lineages is very common: up to four lineages were found in a same stream, and up to three in a single moss sample of 5 cm2. In contrast to the large-scale geographic pattern that has recently been reported in the oribatid mite, the spatial distribution of the bdelloid lineages provided evidence of micro-phylogeographic patterns. If the mtDNA diversity indicates that the lineages are independent and represent sympatric cryptic species within P. flaviceps, then the actual bdelloid diversity can be expected to be much greater than that recognized today. [source]