Home About us Contact | |||
Same Solution (same + solution)
Selected AbstractsThe Attentional Resource Allocation Scale (ARAS): psychometric properties of a composite measure for dissociation and absorption,DEPRESSION AND ANXIETY, Issue 8 2010R. N. Carleton M.A. Abstract Background: Differences in attentional processes have been linked to the development and maintenance of psychopathology. Shifts in such processes have been described by the constructs Dissociation and Absorption. Dissociation occurs when external and/or internal stimuli are excluded from consciousness due to discrepant, rather than unitary, manifestations of cognitive awareness [Erdelyi MH. 1994: Int J Clin Exp Hypnosis 42:379,390]. In contrast, absorption can be conceptualized by a focus on limited stimuli, to the exclusion of other stimuli, because of unifying, rather than discrepant, manifestations of cognitive awareness. The Dissociative Experiences Scale [DES; Bernstein EM, Putnam FW. 1986: J Nerv Ment Dis 174:727,735] and Tellegen Absorption Scale [TAS; Tellegen A, Atkinson G. 1974: J Abnorm Psychol 83:268,277] are common measures of each construct; however, no factor analyses are available for the TAS and despite accepted overlap, no one has assessed the DES and TAS items simultaneously. Previous research suggests the constructs and factor structures need clarification, possibly including more parsimonious item inclusion [Lyons LC, Crawford HJ. 1997: Person Individ Diff 23:1071,1084]. The purpose of this study was to evaluate the factor structure of the DES and TAS and create a psychometrically stable measure of Dissociation and Absorption. Methods: This study included data from an undergraduate (n=841; 76% women) and a community sample (n=233; 86% women) who each completed the DES and TAS. Results: Exploratory factor analyses [Osborne JW (ed). 2008: Best Practices in Quantitative Methods. Los Angeles: Sage Publications Inc.] with all DES and TAS items suggested a 15-item 3-factor solution (i.e., imaginative involvement, dissociative amnesia, attentional dissociation). Confirmatory factor analyses resulted in excellent fit indices for the same solution. Conclusions: The items and factors were conceptualized in line with precedent research as the Attentional Resource Allocation Scale (ARAS). Comprehensive results, implications, and future research directions are discussed. Depression and Anxiety, 2010. © 2010 Wiley-Liss, Inc. [source] Improved Synthesis and Isolation of 2,- O -Methyladenosine: Effective and Scalable Enzymatic Separation of 2,/3,- O -Methyladenosine RegioisomersEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 19 2009Saúl Martínez-Montero Abstract An efficient separation of a mixture of 2,/3,- O -methyladenosine regioisomers (1 + 2; 1:1) has been developed by selective enzymatic acylation using immobilized Pseudomonas cepacia lipase (PSL-C) in combination with acetonoxime levulinate as acyl donor. The 3,-hydroxy group of 2,- O -methyladenosine (1) was acylated with high selectivity (ca. 70,%), whereas an equal amount of 3,- O -methyladenosine (2) in the same solution resulted in minor acylation of 5,-hydroxy group (ca. 8,%). The differential behavior of both regioisomers towards enzymatic acylation allowed to develop a separation protocol. Upon extraction of the acylated products, the 3,- O -methyladenosine was isolated in 81,% yield and 97,% purity from the aqueous layer. Hydrolysis of acylated products in organic layer furnished 2,- O -methyladenosine in 67,% yield and 99,% purity. The separation process was successfully applied to the crude reaction mixture of methylated products (ca. 3:1 of 1/2) on 5-g scale. We also report on the use of methyl p -toluenesulfonate as a safe reagent for 2,- O -methylation of adenosine.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA AnalysisADVANCED FUNCTIONAL MATERIALS, Issue 3 2010Shijiang He Abstract Coupling nanomaterials with biomolecular recognition events represents a new direction in nanotechnology toward the development of novel molecular diagnostic tools. Here a graphene oxide (GO)-based multicolor fluorescent DNA nanoprobe that allows rapid, sensitive, and selective detection of DNA targets in homogeneous solution by exploiting interactions between GO and DNA molecules is reported. Because of the extraordinarily high quenching efficiency of GO, the fluorescent ssDNA probe exhibits minimal background fluorescence, while strong emission is observed when it forms a double helix with the specific targets, leading to a high signal-to-background ratio. Importantly, the large planar surface of GO allows simultaneous quenching of multiple DNA probes labeled with different dyes, leading to a multicolor sensor for the detection of multiple DNA targets in the same solution. It is also demonstrated that this GO-based sensing platform is suitable for the detection of a range of analytes when complemented with the use of functional DNA structures. [source] A staggered conservative scheme for every Froude number in rapidly varied shallow water flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2003G. S. Stelling Professor Abstract This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations. Copyright © 2003 John Wiley & Sons, Ltd. [source] Probing the Contraction and Association of Polystyrene Chains in Semidilute Solution by Non-Radiative Energy TransferMACROMOLECULAR RAPID COMMUNICATIONS, Issue 2 2008Fangfang Tao Abstract The interchain contraction and association of polystyrene in semidilute solution near the , temperature are studies using NET. The results reveal that during a drop of temperature, polystyrene chains pass through different states: a smooth change of conformation at temperatures above the , temperature, an accelerated contraction and association, aggregation of polymer chains, and then further continuous contraction below the , temperature. A pronounced hysteresis is observed during repeated heating. A viscosity study of the same solution was compared with the NET results. It indicates that NET can effectively be used to study conformational changes like contraction and association of polymer chains in a semidilute solution. [source] Two new structures in the glycine,oxalic acid systemACTA CRYSTALLOGRAPHICA SECTION C, Issue 6 2010Nikolay A. Tumanov Glycinium semi-oxalate-II, C2H6NO2+·C2HO4,, (A), and diglycinium oxalate methanol disolvate, 2C2H6NO2+·C2O42,·2CH3OH, (B), are new examples in the glycine,oxalic acid family. (A) is a new polymorph of the known glycinium semi-oxalate salt, (C). Compounds (A) and (C) have a similar packing of the semi-oxalate monoanions with respect to the glycinium cations, but in (A) the two glycinium cations and the two semi-oxalate anions in the asymmetric unit are non-equivalent, and the binding of the glycinium cations to each other is radically different. Based on this difference, one can expect that, although the two forms grow concomitantly from the same batch, a transformation between (A) and (C) in the solid state should be difficult. In (B), two glycinium cations and an oxalate anion, which sits across a centre of inversion, are linked via strong short O,H...O hydrogen bonds to form the main structural fragment, similar to that in diglycinium oxalate, (D). Methanol solvent molecules are embedded between the glycinium cations of neighbouring fragments. These fragments form a three-dimensional network via N,H...O hydrogen bonds. Salts (B) and (D) can be obtained from the same solution by, respectively, slow or rapid antisolvent crystallization. [source] A Sensitive Fluorescence Anisotropy Method for Point Mutation Detection by Using Core,Shell Fluorescent Nanoparticles and High-Fidelity DNA LigaseCHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2007Ting Deng Dr. Abstract The present study reports a proof-of-principle for a sensitive genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) based on fluorescence anisotropy measurements through a core,shell fluorescent nanoparticles assembly and ligase reaction. By incorporating the core,shell fluorescent nanoparticles into fluorescence anisotropy measurements, this assay provided a convenient and sensitive detection assay that enabled straightforward single-base discrimination without the need of complicated operational steps. The assay was implemented via two steps: first, the hybridization reaction that allowed two nanoparticle-tagged probes to hybridize with the target DNA strand and the ligase reaction that generated the ligation between perfectly matched probes while no ligation occurred between mismatched ones were implemented synchronously in the same solution. Then, a thermal treatment at a relatively high temperature discriminated the ligation of probes. When the reaction mixture was heated to denature the duplex formed, the fluorescence anisotropy value of the perfect-match solution does not revert to the initial value, while that of the mismatch again comes back as the assembled fluorescent nanoparticles dispart. The present approach has been demonstrated with the discrimination of a single base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild type and mutant type were successfully scored. Due to its ease of operation and high sensitivity, it was expected that the proposed detection approach might hold great promise in practical clinical diagnosis. [source] Characterization of chitosan/citrate and chitosan/acetate films and applications for wound healingJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Junichi Tanigawa Abstract In this work, we aimed to develop a scaffold of chitosan (CS) with a porous sponge structure for an artificial skin. The scaffolds were prepared from both CS/citric and CS/acetic solutions. In addition, the cast films were also prepared from the same solutions to compare some of their properties. They were characterized using WAXD, FTIR, DSC, tensile measurements, and SEM observation. It was found that CS/acetate had low crystallinity but CS/citrate was in an amorphous state, resulting in a large ductility with rubbery softness. Despite the different morphologies of CS/citrate and CS/acetate scaffolds, both scaffolds exhibited the wound healing effect available for tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] The effect of different kinds of electrolyte and non-electrolyte solutions on the survival rate and morphology of zebrafish Danio rerio embryosJOURNAL OF FISH BIOLOGY, Issue 7 2009F. Lahnsteiner The effect of electrolyte and non-electrolyte solutions on the survival and on the morphology of zebrafish Danio rerio embryos was investigated. Embryos in different ontogenetic stages were incubated in electrolyte (NaCl, KCl, MgCl2 and CaCl2) and non-electrolyte solutions [sucrose and polyvinylalcohol (PVA)] of different concentrations for 5 , 15 min. The embryos were hatched to the long-pec stage and the effective concentrations which caused a 50% decrease in embryo development (EC50) were determined. The morphometric changes, which were caused by the test solutions, were measured. Ion channel blockers were used to see if active ion transport played a role for embryo survival. Finally, dechorionated embryos were exposed to the test solutions to get indications about the importance of chorion and perivitelline space. For 12 hours post fertilization (hpf) embryos and a 15 min exposure period, EC50 was highest for MgCl2 (1·60 mol l,1), followed by sucrose (0·73 mol l,1), NaCl (0·49 mol l,1), KCl (0·44 mol l,1), CaCl2 (0·43 mol l,1) and PVA [0·0005 mol l,1 (2·2%)]. EC50 were lower for early embryonic stages than for advanced stages for all solutions with exception of MgCl2 and sucrose. At the EC50, MgCl2 and CaCl2 solutions did not induce morphometric changes. NaCl and sucrose solutions induced reversible morphometric changes, which were compensated within 10 min. Only the EC50 of KCl and PVA solutions induced permanent morphometric changes, which could not be compensated. Incubation of embryos in electrolyte and non-electrolyte solutions together with ouabain (blocker of Na+, K+ ATPase), HgCl3 (dose-dependent inhibition of aquaporine channels), verapamil (inhibition of calcium and magnesium uptake) and amiloride (inhibition of sodium uptake) significantly decreased the per cent of embryos developing to the long-pec stage in comparison to the same solutions without blockers. Ouabain and HgCl3 also induced morphometric changes. For dechorionated embryos the survival rates in water and in the different test solutions were similar to untreated embryos. [source] Crystallization of recombinant human growth hormone at elevated pressures: Pressure effects on PEG-induced volume exclusion interactionsBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010Ryan L. Crisman Abstract Crystallization of recombinant human growth hormone (rhGH) at elevated pressures was investigated in the presence of 6,000 molecular weight poly(ethylene glycol; PEG-6000). Crystallization of rhGH at atmospheric pressure occurred at a protein concentration of 15,mg/mL in 6% PEG-6000. Crystallization did not occur in the same solutions at 250,MPa. In contrast, at a pressure of 250,MPa in the presence of 8% PEG-6000, rhGH readily crystallized from solutions containing 35,mg/mL rhGH, whereas amorphous precipitate formed in the same solutions at atmospheric pressure. Osmotic virial coefficients were determined from static light scattering measurements and combined with a hard-sphere activity coefficient model to predict rhGH activity coefficients as a function of pressure and PEG concentration. Predicted activity coefficients quantitatively matched those determined from equilibrium solubility measurements. The ability to adjust the thermodynamic non-ideality with pressure provides a valuable tool to study protein crystallization in addition to providing a methodology for obtaining crystals at elevated pressures. Biotechnol. Bioeng. 2010;107:663,672. © 2010 Wiley Periodicals, Inc. [source] |