Home About us Contact | |||
Same Gene (same + gene)
Selected AbstractsGenetic variants in the IMPA2 gene do not confer increased risk of febrile seizures in Caucasian patientsEUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2007M. A. Blair Pathogenesis of febrile seizures (FS), causing the most common of types of seizures in children, remains unknown. Genetic factors appear to play a pivotal role and FS can be inherited as a monogenic or genetically complex disorder. Several risks factors have been proposed but many of the previously reported genetic associations were not replicated. Non-coding polymorphisms in the myo-inositol monophosphatase 2 gene (IMPA2) have been suggested as a susceptibility factor for FS in Japanese patients. It is unknown whether genetic variants in the same gene constitute a risk factor for FS in other ethnic groups because the frequency of FS is significantly higher in Japanese children than in Caucasian patients. We investigated the role of the IMPA2 gene in a cohort of 96 unrelated Caucasian subjects with a history of FS. We did not identify any significant differences in genotypes of cases and matched controls; no mutations or non-synonymous polymorphisms were detected in these individuals. Our data suggest that the genetic variants in the IMPA2 gene are not associated with a risk of FS in Caucasian patients and patients from various genetic groups are likely to have different genetic causes of FS. [source] The mouse frizzy mutation (fr) maps between D7Csu5 and D7Mit165EXPERIMENTAL DERMATOLOGY, Issue 8 2008Emily L. Paul Abstract:, We have previously shown that the rat fuzzy and Charles River ,hairless' mutations are defects in the same gene on rat Chr 1, and are likely orthologues of the frizzy mutation (fr) on mouse Chr 7. To test the hypothesis that these variants could result from defects in Fgfr2, we crossed fr/fr mice (from the inbred FS/EiJ strain) with mice that carry a recessive lethal mutation in Fgfr2. Mice inheriting both mutations were phenotypically normal, indicating that fr is not an allele of Fgfr2. To genetically map fr, we crossed these hybrid mice, or F1 mice made by crossing FS/EiJ with the wild-type C57BL/6J or BALB/cBy strains, back to the FS/EiJ strain. The resulting 546 backcross progeny were typed for linked markers to position fr centromeric of Fgfr2, between D7Csu5 and D7Mit165; an interval that contains only 2.7 Mb and fewer than 70 genes. Further characterization of regional recombinants for sequence-level polymorphisms should allow sufficient refinement of fr's location to facilitate an eventual molecular assignment for this classical mutation. [source] Characterization of membrane-bound prolyl endopeptidase from brainFEBS JOURNAL, Issue 17 2008Jofre Tenorio-Laranga Prolyl oligopeptidase (POP) is a serine protease that cleaves small peptides at the carboxyl side of an internal proline residue. Substance P, arginine,vasopressin, thyroliberin and gonadoliberin are proposed physiological substrates of this protease. POP has been implicated in a variety of brain processes, including learning, memory, and mood regulation, as well as in pathologies such as neurodegeneration, hypertension, and psychiatric disorders. Although POP has been considered to be a soluble cytoplasmic peptidase, significant levels of activity have been detected in membranes and in extracellular fluids such as serum, cerebrospinal fluid, seminal fluid, and urine, suggesting the existence of noncytoplasmic forms. Furthermore, a closely associated membrane prolyl endopeptidase (PE) activity has been previously detected in synaptosomes and shown to be different from the cytoplasmic POP activity. Here we isolated, purified and characterized this membrane-bound PE, herein referred to as mPOP. Although, when attached to membranes, mPOP presents certain features that distinguish it from the classical POP, our results indicate that this protein has the same amino acid sequence as POP except for the possible addition of a hydrophobic membrane anchor. The kinetic properties of detergent-soluble mPOP are fully comparable to those of POP; however, when attached to the membranes in its natural conformation, mPOP is significantly less active and, moreover, it migrates anomalously in SDS/PAGE. Our results are the first to show that membrane-bound and cytoplasmic POP are encoded by variants of the same gene. [source] Homozygous deletions within the 11q13 cervical cancer tumor-suppressor locus in radiation-induced, neoplastically transformed human hybrid cellsGENES, CHROMOSOMES AND CANCER, Issue 4 2004Marc S. Mendonca Studies on nontumorigenic and tumorigenic human cell hybrids derived from the fusion of HeLa (a cervical cancer cell line) with GM00077 (a normal skin fibroblast cell line) have demonstrated "functional" tumor-suppressor activity on chromosome 11. It has been shown that several of the neoplastically transformed radiation-induced hybrid cells called GIMs (gamma ray induced mutants), isolated from the nontumorigenic CGL1 cells, have lost one copy of the fibroblast chromosome 11. We hypothesized, therefore, that the remaining copy of the gene might be mutated in the cytogenetically intact copy of fibroblast chromosome 11. Because a cervical cancer tumor suppressor locus has been localized to chromosome band 11q13, we performed deletion-mapping analysis of eight different GIMs using a total of 32 different polymorphic and microsatellite markers on the long arm (q arm) of chromosome 11. Four irradiated, nontumorigenic hybrid cell lines, called CONs, were also analyzed. Allelic deletion was ascertained by the loss of a fibroblast allele in the hybrid cell lines. The analysis confirmed the loss of a fibroblast chromosome 11 in five of the GIMs. Further, homozygous deletion (complete loss) of chromosome band 11q13 band sequences, including that of D11S913, was observed in two of the GIMs. Detailed mapping with genomic sequences localized the homozygous deletion to a 5.7-kb interval between EST AW167735 and EST F05086. Southern blot hybridization using genomic DNA probes from the D11S913 locus confirmed the existence of homozygous deletion in the two GIM cell lines. Additionally, PCR analysis showed a reduction in signal intensity for a marker mapped 31 kb centromeric of D11S913 in four other GIMs. Finally, Northern blot hybridization with the genomic probes revealed the presence of a novel >15-kb transcript in six of the GIMs. These transcripts were not observed in the nontumorigenic hybrid cell lines. Because the chromosome 11q13 band deletions in the tumorigenic hybrid cell lines overlapped with the minimal deletion in cervical cancer, the data suggest that the same gene may be involved in the development of cervical cancer and in radiation-induced carcinogenesis. We propose that a gene localized in proximity to the homozygous deletion is the candidate tumor-suppressor gene. © 2004 Wiley-Liss, Inc. [source] Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipesINSECT MOLECULAR BIOLOGY, Issue 5 2008W. A. Gaines IV Abstract Spider dragline silk is primarily composed of proteins called major ampullate spidroins (MaSps) that consist of a large repeat array flanked by nonrepetitive N- and C-terminal domains. Until recently, there has been little evidence for more than one gene encoding each of the two major spidroin silk proteins, MaSp1 and MaSp2. Here, we report the deduced N-terminal domain sequences for two distinct MaSp1 genes from Nephila clavipes (MaSp1A and MaSp1B) and for MaSp2. All three MaSp genes are co-expressed in the major ampullate gland. A search of the GenBank database also revealed two distinct MaSp1 C-terminal domain sequences. Sequencing confirmed that both MaSp1 genes are present in all seven Nephila clavipes spiders examined. The presence of nucleotide polymorphisms in these genes confirmed that MaSp1A and MaSp1B are distinct genetic loci and not merely alleles of the same gene. We experimentally determined the transcription start sites for all three MaSp genes and established preliminary pairing between the two MaSp1 N- and C-terminal domains. Phylogenetic analysis of these new sequences and other published MaSp N- and C-terminal domain sequences illustrated that duplications of MaSp genes may be widespread among spider species. [source] Smoking and the risk of breast cancer among carriers of BRCA mutationsINTERNATIONAL JOURNAL OF CANCER, Issue 3 2004Parviz Ghadirian Abstract The effect of cigarette smoking on the risk of breast cancer is controversial, although most studies show little or no effect. It has been suggested that smoking may reduce the risk of developing hereditary breast cancer. We completed a case-control study on 1,097 women with breast cancer who were BRCA1 or BRCA2 mutation carriers and 1,097 age-matched controls with a mutation in the same gene but without breast cancer. There were no statistically significant differences between the cases and controls in terms of the number of current and ex-smokers (41.2% and 40.4%, respectively) or the age at smoking commencement (18.2 years and 18.5 years, respectively). There were no statistically significant differences between cases and controls regarding beginning smoking within 5 years of menarche (OR = 1.03; 95% CI 0.83 to l.28) or before the first pregnancy (OR = 1.09; 95% CI = 0.90 to 1.33). In conclusion, contrary to our previous report, smoking does not appear to be a risk factor for breast cancer among carriers of BRCA mutations. © 2004 Wiley-Liss, Inc. [source] Inherited defects of coagulation Factor V: the thrombotic sideJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2006H. L. VOS Summary., DNA variations in the Factor V gene have played a major role in thrombosis research ever since the discovery of Factor V Leiden. Here, all relatively common DNA variations in the coding regions of the Factor V gene are discussed. Many of them have been associated with venous thrombosis or related diseases. However, most variations have been studied separately, without taking the presence of other variations in the same gene into account. This means that their association with disease should be interpreted with caution, as it may reflect linkage with another variation. An approach in which a haplotype-based analysis of the Factor V gene is combined with in vitro assays of recombinant proteins is advocated. Finally, a possible reason for the relatively polymorphic nature of the Factor V protein is discussed. [source] Gene expression microarray analysis and genome databases facilitate the characterization of a chromosome 22 derived homogenously staining regionMOLECULAR CARCINOGENESIS, Issue 1 2004Suzanna L. Arcand Abstract Karyotype and fluorescence in situ hybridization (FISH) analyses previously identified a homogenously staining region (HSR) derived from chromosome 22 in OV90, an epithelial ovarian cancer (EOC) cell line. Affymetrix® expression microarrays in combination with the UniGene and Human Genome Browser databases were used to identify the candidate genes comprising the amplicon of the HSR, based on comparison of expression profiles of OV90, EOC cell lines lacking HSRs and primary cultures of normal ovarian surface epithelial (NOSE) cells. A group of probe sets displaying a minimum 3-fold overexpression with a high reliability score (P-call) in OV90 were identified which represented genes that mapped within a 1,2 Mb interval on chromosome 22. A large number of probe sets, some of which represent the same genes, displayed no evidence of overexpression and/or low reliability scores (A-call). An investigation of the probe set sequences with the Affymetrix® and Sanger Institute Chromosome 22 Group databases revealed that some of the probe sets displaying discordant results for the same gene were complementary to intronic sequences and/or the antisense strand. Microarray results were validated by RT-PCR. Genomic analysis suggests that the HSR was derived from the amplification of a 1.1 Mb interval defined by the chromosomal map positions of ZNF74 and Hs.372662, at 22q11.21. The deduced amplicon is derived from a complex region of chromosome 22 that harbors low-copy repeats (LCRs). The amplicon contains 18 genes as likely targets for gene amplification. This study illustrates that large-scale expression microarray analysis in combination with genome databases is sufficient for deducing target genes associated with amplicons and stresses the importance of investigating probe set design before engaging in validation studies. © 2004 Wiley-Liss, Inc. [source] Combining paternally and maternally inherited mitochondrial DNA for analysis of population structure in musselsMOLECULAR ECOLOGY, Issue 6 2004Robert A. Krebs Abstract Sequence divergence for a fragment of the 16S rRNA gene was compared to identify the advantages in using mitochondrial genes that descend separately through the female and male lineages to examine population structure. The test compared divergence among four local species of freshwater mussels (Unionidae) and was extended to multiple populations of one species, Pyganodon grandis. For the same gene, the male-inherited sequences diverged at a faster rate, producing longer branch lengths in the phylogenies. Of particular use were sequences extracted from P. grandis populations from the southern region of the Lake Erie watershed (Ohio, USA); five male-inherited haplotypes were found. Only one change was observed in the female-inherited form in this region. Therefore, more rapid evolution has occurred in the male form of the gene, and this form provided stronger evidence of geographical isolation among populations. A combination of analyses on haplotypes derived through males and females creates complementary opportunities to identify evolutionary relationships caused by drift and migration in mussels. [source] The dominantly inherited motor and sensory neuropathies: Clinical and molecular advancesMUSCLE AND NERVE, Issue 5 2006Garth A. Nicholson MB Abstract The rapid advances in the molecular genetics and cell biology of hereditary neuropathy have revealed great genetic complexity. It is a challenge for physicians and laboratories to keep pace with new discoveries. Classification of hereditary neuropathies has evolved from a simple clinical to a detailed molecular classification. However, the molecular classification is not simple to use, as different mutations of the same gene produce a range of phenotypes. The logistics of testing for multiple gene mutations are considerable. This review gives a clinical overview of molecular and clinical advances in the dominant hereditary motor and sensory neuropathies [HMSNs, Charcot,Marie,Tooth (CMT) neuropathy], which account for some 60%,70% of families with CMT. The dominant forms of CMT have cellular mechanisms different from those of recessive forms and are a separate diagnostic challenge, so they are not included in this review. Diagnostic testing requires accurate clinical information and a selective approach to gene screening until the cost of multiple gene mutation screening falls. Accurate molecular diagnosis is critical to genetic counseling. This review concentrates on how molecular information can be used clinically, on how physicians can keep pace with new developments, and on the relevance of this new knowledge to patients. Muscle Nerve, 2006 [source] Molecular control of ethylene production by cyanide in Arabidopsis thalianaPHYSIOLOGIA PLANTARUM, Issue 2 2000Jennifer McMahon Smith Although cyanide has long been recognized as a co-product of ethylene synthesis, little attention has been given to its potential physiological and molecular roles. In the present work, the long-term effects of cyanide on growth and development were observed in Arabidopsis thaliana. Two days after a single 20-min application of cyanide, plants demonstrated visible signs of stress. Long-term detrimental effects on growth and photosynthetic capabilities were noted, including low chlorophyll accumulation and stunted growth. Because of the relationship between cyanide and ethylene production, we chose to evaluate the results of cyanide treatment on genes encoding proteins involved in ethylene synthesis. We have found that only the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, ACS6, is rapidly activated in response to cyanide treatment, while other ACS genes were unaffected. This same gene has previously been shown to be transcriptionally activated in response to touch and other environmental stimuli. Cyanide was capable of activating ACS6 transcription within 10 min of treatment, and the amount of transcript correlated positively with the cyanide dosage. Due to the toxic nature of cyanide, plant in vivo concentrations are generally maintained lower than 10 ,M, but can increase under certain stresses. In the present work, we observed that physiologically relevant concentrations as low as 1 ,M HCN, considered metabolically ,safe', were capable of initiating ACS6 transcription. ACS6 transcripts were not substantially reduced as a result of multiple cyanide treatments, which is in contrast with the effects of mechanical stimulation on transcription. Our results suggest a relationship between cyanide production during ethylene synthesis and the molecular control of ethylene synthesis. This work corresponds with earlier experiments that have demonstrated that ethylene and cyanide can elicit some similar physiological responses. It is possible that cyanide may play an active role in ethylene regulation under conditions where rapid cyanide accumulation occurs. Since cyanide can rapidly activate ethylene synthesis, it is possible that it is involved in the positive-feedback regulation of ethylene that occurs in some plant tissues. [source] Genetic analysis of seedling resistance to Stagonospora nodorum blotch in selected tetraploid and hexaploid wheat genotypesPLANT BREEDING, Issue 2 2009P. K. Singh Abstract Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is a major component of the leaf-spotting disease complex of wheat (Triticum aestivum L.) in the northern Great Plains of North America. This study was conducted, under controlled environmental conditions, to determine the inheritance of resistance to SNB in a diverse set of hexaploid and tetraploid wheat genotypes and to decipher the genic/allelic relationship among the resistance gene(s). Plants were inoculated at the two to three-leaf stages with a spore suspension of P. nodorum isolate Kelvington-SK and disease reaction was assessed 8 days after inoculation based on a lesion-type scale. Tests of the F1 and F2 generations and of F2 : 3 or F2 : 5 families indicated that a single recessive gene controlled resistance to SNB in both hexaploid and tetraploid resistance sources. Lack of segregation in intra-specific and inter-specific crosses between the hexaploid and the tetraploid resistant genotypes, indicated that these genetically diverse sources of resistance possess the same gene for resistance to SNB. Results of this study suggest that the wheat- P. nodorum interaction may follow the toxin model of the gene-for-gene hypothesis. [source] Multiple GUS expression patterns of a single Arabidopsis geneANNALS OF APPLIED BIOLOGY, Issue 1 2009Ekrem Dündar Abstract Ten independent transposant lines with gene or enhancer traps (ET) inserted into the same gene (At2g01170) were identified in Arabidopsis thaliana. Transposon insertions were confirmed for each line. Only three of five ET lines and only one of the five gene trap (GT) lines displayed uidA (GUS) staining. The GUS (,-glucuronidase) expression patterns of the ET lines were different in all three lines. In the GT line, the GUS expression was restricted to the vascular tissue under all conditions examined. The variation in ET GUS expression suggests that each ET was controlled by different enhancer elements or the different elements of the trapped locus may give rise to different GUS expression patterns. Of five GT lines, three have the GUS gene in the same orientation as the At2g01170 open reading frame, yet only one yielded GUS staining. Regardless of the insertion construct, only those transposants with an insertion at the 3, end of the gene yielded GUS staining. Some transposants displayed a longer root phenotype in the presence of kanamycin that was also observed in 3, insertion sites in At2g01170. Taken together, these data show that insertions in the 5, end of the gene disrupted expression and emphasise the complexity encountered with ET and GT constructs to characterise the expression patterns of genes of interest based solely on GUS expression patterns. [source] Epidemiological Approach to Identifying Genetic Predispositions for Atypical Hemolytic Uremic SyndromeANNALS OF HUMAN GENETICS, Issue 1 2010Maren Sullivan Summary Atypical hemolytic uremic syndrome (aHUS) is caused by several susceptibility genes. A registry including analyses of susceptibility genes, familial occurrence and genotype-phenotype correlation should provide classification insights. Registry data of 187 unrelated index patients included age at onset, gender, family history, relapse of aHUS and potentially triggering conditions. Mutation analyses were performed in the genes CFH, CD46 and CFI and in the six potential susceptibility genes, FHR1 to FHR5 and C4BP. Germline mutations were identified in 17% of the index cases; 12% in CFH, 3% in CD46 and 2% in CFI. Twenty-nine patients had heterozygous mutations and one each had a homozygous and compound heterozygous mutation. Mutations were not found in the genes FHR1-5 and C4BP. In 40% of the patients with familial HUS a mutation was found. Penetrance by age 45 was 50% among carriers of any mutation including results of relatives of mutation-positive index cases. The only risk factor for a mutation was family history of HUS (p = 0.02). Penetrance of aHUS in carriers of mutations is not complete. Occurrence of homo- and heterozygous mutations in the same gene suggests that the number of necessary DNA variants remains unclear. Among clinical information only familial occurrence predicts a mutation. [source] Structure of the newly found green turtle egg-white ribonucleaseACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2010Somporn Katekaew Marine green turtle (Chelonia mydas) egg-white ribonuclease (GTRNase) was crystallized from 1.1,M ammonium sulfate pH 5.5 and 30% glycerol using the sitting-drop vapour-diffusion method. The structure of GTRNase has been solved at 1.60,Å resolution by the molecular-replacement technique using a model based on the structure of RNase 5 (murine angiogenin) from Mus musculus (46% identity). The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 86.271, b = 34.174, c = 39.738,Å, , = 90, , = 102, , = 90°. GTRNase consists of three helices and seven ,-strands and displays the ,+, folding topology typical of a member of the RNase A superfamily. Superposition of the C, coordinates of GTRNase and RNase A superfamily members indicates that the overall structure is highly similar to that of angiogenin or RNase 5 from M. musculus (PDB code 2bwl) and RNase A from Bos taurus (PDB code 2blz), with root-mean-square deviations of 3.9 and 2.0,Å, respectively. The catalytic residues are conserved with respect to the RNase A superfamily. The three disulfide bridges observed in the reptilian enzymes are conserved in GTRNase, while one further disulfide bond is required for the structural stability of mammalian RNases. GTRNase is expressed in egg white and the fact that its sequence has the highest similarity to that of snapping turtle pancreatic RNase suggests that the GTRNase secreted from oviduct cells to form egg white is probably the product of the same gene as activated in pancreatic cells. [source] Off-Target Effects Related to the Phosphorothioate Modification of Nucleic AcidsCHEMMEDCHEM, Issue 8 2010Johannes Winkler Dr. Abstract Phosphorothioate antisense oligonucleotides have been widely used in clinical studies for rational sequence-specific gene silencing. However, several sequence-unspecific off-target effects have been recently described for this compound class. In contrast to siRNA-mediated knockdown of the same gene, the bcl-2 -targeted oblimersen (Genasense, G3139) downregulates a number of proteins involved in apoptotic resistance and several glycolytic enzymes in 607B human melanoma cells. Regardless of their target, phosphorothioate-modified antisense and siRNA compounds, but not oligonucleotides with a phosphodiester backbone, resulted in a similar impact on the proteome. Unspecifically downregulated proteins include cancer markers involved in apoptotic resistance and endoplasmatic reticulum (ER) stress such as the 78,kDa glucose regulated protein (GRP,78), protein disulfide isomerase,A3 (PDIA3, GRP,58), calumenin, and galectin-1, as well as the glycolytic enzymes triose phosphate isomerase, glyceraldehyde phosphodehydrogenase, and phosphoglycerate mutase. The depletion of the glycolytic enzymes is reflected by a decrease in L -lactate production, indicating a partial reversal of the Warburg effect. Compared with other phosphorothioate oligonucleotides, oblimersen generally led to a more pronounced effect both in terms of the number of influenced proteins and the extent of downregulation, suggesting a synergistic effect of Bcl-2 downregulation. [source] Parsimony overcomes statistical inconsistency with the addition of more data from the same geneCLADISTICS, Issue 5 2005Kurt M. Pickett Many authors have demonstrated that the parsimony method of phylogenetic analysis can fail to estimate phylogeny accurately under certain conditions when data follow a model that stipulates homogeneity of the evolutionary process. These demonstrations further show that no matter how much data are added, parsimony will forever exhibit this statistical inconsistency if the additional data have the same distributional properties as the original data. This final component,that the additional data must follow the same distribution as the original data,is crucial to the demonstration. Recent simulations show, however, that if data evolve heterogeneously, parsimony can perform consistently. Here we show, using natural data, that parsimony can overcome inconsistency if new data from the same gene are added to an analysis already exhibiting a condition indistinguishable from inconsistency. © The Willi Hennig Society 2005. [source] GENETIC VARIATION IN MALE EFFECTS ON FEMALE REPRODUCTION AND THE GENETIC COVARIANCE BETWEEN THE SEXESEVOLUTION, Issue 6 2003MARY ELLEN CZESAK Abstract., Males of many insect species increase the fecundity and/or egg size of their mates through the amount or composition of their nuptial gifts or ejaculate. The genetic bases of such male effects on fecundity or egg size are generally unknown, and thus their ability to evolve remains speculative. Likewise, the genetic relationship between male and female investment into reproduction in dioecious species, which is expected to be positive if effects on fecundity are controlled by at least some of the same genes in males and females, is also unknown. Males of the seed beetle Stator limbatus contribute large ejaculates to females during mating, and the amount of donated ejaculate is positively correlated with male body mass. Females mated to large males lay more eggs in their lifetime than females mated to small males. We describe an experiment in which we quantify genetic variation in the number of eggs sired by males (mated to a single female) and found that a significant proportion of the phenotypic variance in the number of eggs sired by males was explained by their genotype. Additionally, the number of eggs sired by a male was highly positively genetically correlated with his body mass. The between-sex genetic correlation, that is, the genetic correlation between the number of eggs sired by males and the number of eggs laid by females, was highly positive when eggs were laid on Acacia greggii seeds. This indicates that males that sire many eggs have sisters that lay many eggs. Thus, some of the genes that control male ejaculate size (or some other fecundity-enhancing factor) when expressed in males appear to control fecundity when expressed in females. We found no significant interaction between male and female genotype on fecundity. [source] Genetic and environmental influences on Anxious/Depression during childhood: a study from the Netherlands Twin RegisterGENES, BRAIN AND BEHAVIOR, Issue 8 2005D. I. Boomsma For a large sample of twin pairs from the Netherlands Twins Register who were recruited at birth and followed through childhood, we obtained parental ratings of Anxious/Depression (A/D). Maternal ratings were obtained at ages 3 years (for 9025 twin pairs), 5 years (9222 pairs), 7 years (7331 pairs), 10 years (4430 pairs) and 12 years (2363 pairs). For 60,90% of the pairs, father ratings were also available. Multivariate genetic models were used to test for rater-independent and rater-specific assessments of A/D and to determine the genetic and environmental influences on individual differences in A/D at different ages. At all ages, monozygotic twins resembled each other more closely for A/D than dizygotic twins, implying genetic influences on variation in A/D. Opposite sex twin pairs resembled each other to same extent as same-sex dizygotic twins, suggesting that the same genes are expressed in boys and girls. Heritability estimates for rater-independent A/D were high in 3-year olds (76%) and decreased in size as children grew up [60% at age 5, 67% at age 7, 53% at age 10 (60% in boys) and 48% at age 12 years]. The decrease in genetic influences was accompanied by an increase in the influence of the shared family environment [absent at ages 3 and 7, 16% at age 5, 20% at age 10 (5% in boys) and 18% at age 12 years]. The agreement between parental A/D ratings was between 0.5 and 0.7, with somewhat higher correlations for the youngest group. Disagreement in ratings between the parents was not merely the result of unreliability or rater bias. Both the parents provided unique information from their own perspective on the behavior of their children. Significant influences of genetic and shared environmental factors were found for the unique parental views. At all ages, the contribution of shared environmental factors to variation in rater-specific views was higher for father ratings. Also, at all ages except age 12, the heritability estimates for the rater-specific phenotype were higher for mother ratings (59% at age 3 and decreasing to 27% at age 12 years) than for father ratings (between 14 and 29%). Differences between children, even as young as 3 years, in A/D are to a large extent due to genetic differences. As children grow up, the variation in A/D is due in equal parts to genetic and environmental influences. Anxious/Depression, unlike many other common childhood psychopathologies, is influenced by the shared family environment. These findings may provide support for why certain family therapeutic approaches are effective in the A/D spectrum of illnesses. [source] Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpointGENES, CHROMOSOMES AND CANCER, Issue 2 2009Martin G. McCabe Isodicentric 17q is the most commonly reported chromosomal abnormality in medulloblastomas. Its frequency suggests that genes disrupted in medulloblastoma formation may play a role in tumorigenesis. We have previously identified two chromosome 17 breakpoint at a 1 Mb resolution. Our aims were to accurately map the position of these breakpoints and to identify mechanisms of gene disruption at this site. CGH with a custom tiling path genomic BAC array of chromosome 17 enriched with fosmids at the breakpoint regions was used to analyze a series of 45 medulloblastomas and three medulloblastoma-derived cell lines. In total, 17 of 45 medulloblastomas had an isodicentric 17q. Two breakpoint regions were identified and their positions were mapped. The array identified a more complex arrangement at the breakpoint than has been reported previously using lower resolution BAC arrays. The patterns observed indicated that dicentric chromosome formation occurs both via nonallelic homologous recombination between palindromically arranged low copy repeats (the previously accepted mechanism) and by recombination between nonidentical sequences. In addition, novel alternative structural alterations, a homozygous deletion and a duplication, were identified within the chromosome breakpoint region in two cases. At the resolution of the array, these structural alterations spanned the same genes as cases with dicentric 17q formation, implying that the disruption of genes at the chromosome breakpoint itself may be of greater biological significance than has previously been suspected. © 2008 Wiley-Liss, Inc. [source] Missense mutations of human homeoboxes: A reviewHUMAN MUTATION, Issue 5 2001Angela V. D'Elia Abstract The homeodomain (encoded by the homeobox) is the DNA-binding domain of a large variety of transcriptional regulators involved in controlling cell fate decisions and development. Mutations of homeobox-containing genes cause several diseases in humans. A variety of missense mutations giving rise to human diseases have been described. These mutations are an excellent model to better understand homeodomain molecular functions. To this end, homeobox missense mutations giving rise to human diseases are reviewed. Seventy-four independent homeobox mutations have been observed in 17 different genes. In the same genes, 30 missense mutations outside the homeobox have been observed, indicating that the homeodomain is more easily affected by single amino acids changes than the rest of the protein. Most missense mutations have dominant effects. Several data indicate that dominance is mostly due to haploinsufficiency. Among proteins having the homeodomain as the only DNA-binding domain, three "hot spot" regions can be delineated: 1) at codon encoding for Arg5; 2) at codon encoding for Arg31; and 3) at codons encoding for amino acids of recognition helix. In the latter, mutations at codons encoding for Arg residues at positions 52 and 53 are prevalent. In the recognition helix, Arg residues at positions 52 and 53 establish contacts with phosphates in the DNA backbone. Missense mutations of amino acids that contribute to sequence discrimination (such as those at positions 50 and 54) are present only in a minority of cases. Similar data have been obtained when missense mutations of proteins possessing an additional DNA-binding domain have been analyzed. The only exception is observed in the POU1F1 (PIT1) homeodomain, in which Arg58 is a "hot spot" for mutations, but is not involved in DNA recognition. Hum Mutat 18:361,374, 2001. © 2001 Wiley-Liss, Inc. [source] Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans,JOURNAL OF MEDICAL VIROLOGY, Issue 1 2002M. Shaw Abstract In order to identify molecular changes associated with the transmission of avian influenza A H5N1 and H9N2 viruses to humans, the internal genes from these viruses were compared to sequences from other avian and human influenza A isolates. Phylogenetically, each of the internal genes of all sixteen of the human H5N1 and both of the H9N2 isolates were closely related to one another and fell into a distinct clade separate from clades formed by the same genes of other avian and human viruses. All six internal genes were most closely related to those of avian isolates circulating in Asia, indicating that reassortment with human strains had not occurred for any of these 18 isolates. Amino acids previously identified as host-specific residues were predominantly avian in the human isolates although most of the proteins also contained residues observed previously only in sequences of human influenza viruses. For the majority of the nonglycoprotein genes, three distinct subgroups could be distinguished on bootstrap analyses of the nucleotide sequences, suggesting multiple introductions of avian virus strains capable of infecting humans. The shared nonglycoprotein gene constellations of the human H5N1 and H9N2 isolates and their detection in avian isolates only since 1997 when the first human infections were detected suggest that this particular gene combination may confer the ability to infect humans and cause disease. J. Med. Virol. 66:107,114, 2002. Published 2002 Wiley-Liss, Inc. [source] A behaviour-genetic analysis of orthographic learning, spelling and decodingJOURNAL OF RESEARCH IN READING, Issue 1 2008Brian Byrne As part of a longitudinal twin study of literacy and language, we conducted a behaviour-genetic analysis of orthographic learning, spelling and decoding in Grade 2 children (225 identical and 214 fraternal twin pairs) in the United States and Australia. Each variable showed significant genetic and unique environment influences. Multivariate analyses revealed very high genetic correlations among the variables, indicating that the same genes are involved in their aetiology. These genes are partly independent of those contributing to intelligence. A further analysis indicated that the covariation between decoding and orthographic learning is mediated by shared genes rather than by a direct causal path. The authors argue that a learning parameter, most directly assessed by orthographic learning in this study, underlies all three literacy variables. The results are also discussed in relation to Share's self-teaching hypothesis, which may require modification. [source] Association Between Ethanol and Sucrose Intake in the Laboratory Mouse: Exploration Via Congenic Strains and Conditioned Taste AversionALCOHOLISM, Issue 3 2000David A. Blizard Background: A substantial body of literature indicates that intakes of "sweet' solutions and ethanol are positively correlated across inbred strains of rats and mice but there has been speculation that the correlation is fortuitous and there is no agreement on the underlying mechanism. Methods and Results: We assessed the correlation between intake of sucrose and ethanol in congenic mice created by backcrossing alleles favoring sucrose intake from the BXD RI-5 strain into DBA/2J. In addition, to probe more specifically the interrelationship between intake of the two solutions, we examined aversion generalization from sucrose to ethanol in C57BL/6J mice. Among the congenic mice, a statistically significant product-moment correlation of r= 0.36 (p < 0.02) was found between 6-hr intake of sucrose corrected for differences in baseline water intake and preference for 10% ethanol presented in a 96-hr 2-bottle test. Furthermore, C57BL/6J male mice conditioned to avoid a 0.2 M sucrose solution generalized their aversion to a 10% ethanol solution presented in the same 2-bottle test, drinking 42.1 ± 9.38% (mean ± SE) of their total fluid intake from the ethanol tube, compared with the control group mean of 69.86 ± 8.84%. Conclusions: The positive association between intake of sucrose and ethanol in congenic mice provides strong evidence that the previously demonstrated genetic correlation between intake of these solutions is not the result of fortuitous fixation of unrelated alleles and provides suggestive evidence that, at least in the B6/D2 lineage, the genetic association between intakes of the two solutions reflects close linkage or the pleiotropic effects of the same genes. The demonstration that a conditioned taste aversion to sucrose generalized to ethanol in the C57BL/6J inbred mouse strain is an extension of similar observations in outbred rats and specifically demonstrates that intake of the two solutions is controlled by some of the same physiologic or neurological processes and thus is consistent with the pleiotropic interpretation of the genetic correlation. [source] Gene expression microarray analysis and genome databases facilitate the characterization of a chromosome 22 derived homogenously staining regionMOLECULAR CARCINOGENESIS, Issue 1 2004Suzanna L. Arcand Abstract Karyotype and fluorescence in situ hybridization (FISH) analyses previously identified a homogenously staining region (HSR) derived from chromosome 22 in OV90, an epithelial ovarian cancer (EOC) cell line. Affymetrix® expression microarrays in combination with the UniGene and Human Genome Browser databases were used to identify the candidate genes comprising the amplicon of the HSR, based on comparison of expression profiles of OV90, EOC cell lines lacking HSRs and primary cultures of normal ovarian surface epithelial (NOSE) cells. A group of probe sets displaying a minimum 3-fold overexpression with a high reliability score (P-call) in OV90 were identified which represented genes that mapped within a 1,2 Mb interval on chromosome 22. A large number of probe sets, some of which represent the same genes, displayed no evidence of overexpression and/or low reliability scores (A-call). An investigation of the probe set sequences with the Affymetrix® and Sanger Institute Chromosome 22 Group databases revealed that some of the probe sets displaying discordant results for the same gene were complementary to intronic sequences and/or the antisense strand. Microarray results were validated by RT-PCR. Genomic analysis suggests that the HSR was derived from the amplification of a 1.1 Mb interval defined by the chromosomal map positions of ZNF74 and Hs.372662, at 22q11.21. The deduced amplicon is derived from a complex region of chromosome 22 that harbors low-copy repeats (LCRs). The amplicon contains 18 genes as likely targets for gene amplification. This study illustrates that large-scale expression microarray analysis in combination with genome databases is sufficient for deducing target genes associated with amplicons and stresses the importance of investigating probe set design before engaging in validation studies. © 2004 Wiley-Liss, Inc. [source] Genetic influences on heart rate variability at rest and during stressPSYCHOPHYSIOLOGY, Issue 3 2009Xiaoling Wang Abstract We tested whether the heritability of heart rate variability (HRV) under stress is different from rest and its dependency on ethnicity or gender. HRV indexed by root mean square of successive differences (RMSSD) and high-frequency (HF) power was measured at rest and during 3 stressors in 427 European and 308 African American twins. No ethnic or gender differences were found for any measures. There was a nonsignificant increase in heritability of RMSSD (from 0.48 to 0.58) and HF (from 0.50 to 0.58) under stress. Up to 81% and 60% of the heritabilities of RMSSD and HF under stress could be attributed to genes influencing rest levels. The heritabilities due to genes expressed under stress were 0.11 for RMSSD and 0.23 for HF. The findings suggest that, independent of ethnicity and gender, HRV regulation at rest and under stress is largely influenced by the same genes with a small but significant contribution of stress-specific genetic effects. [source] Cuticular defects lead to full immunity to a major plant pathogenTHE PLANT JOURNAL, Issue 6 2007Céline Chassot Summary In addition to its role as a barrier, the cuticle is also a source of signals perceived by invading fungi. Cuticular breakdown products have been shown previously to be potent inducers of cutinase or developmental processes in fungal pathogens. Here the question was addressed as to whether plants themselves can perceive modifications of the cuticle. This was studied using Arabidopsis thaliana plants with altered cuticular structure. The expression of a cell wall-targeted fungal cutinase in A. thaliana was found to provide total immunity to Botrytis cinerea. The response observed in such cutinase-expressing plants is independent of signal transduction pathways involving salicylic acid, ethylene or jasmonic acid. It is accompanied by the release of a fungitoxic activity and increased expression of members of the lipid transfer protein, peroxidase and protein inhibitor gene families that provide resistance when overexpressed in wild-type plants. The same experiments were made in the bodyguard (bdg) mutant of A. thaliana. This mutant exhibits cuticular defects and remained free of symptoms after inoculation with B. cinerea. The expression of resistance was accompanied by the release of a fungitoxic activity and increased expression of the same genes as observed in cutinase-expressing plants. Structural defects of the cuticle can thus be converted into an effective multi-factorial defence, and reveal a hitherto hidden aspect of the innate immune response of plants. [source] Epigenetic "bivalently marked" process of cancer stem cell-driven tumorigenesisBIOESSAYS, Issue 9 2007Curt Balch Silencing of tumor suppressor genes (TSGs), by DNA methylation, is well known in adult cancers. However, based on the "stem cell" theory of tumorigenesis, the early epigenetic events arising in malignant precursors remain unknown. A recent report1 demonstrates that, while pluripotent embryonic stem cells lack DNA methylation and possess a "bivalent" pattern of activating and repressive histone marks in numerous TSGs, analogous multipotent malignant cells derived from germ cell tumors (embryonic carcinoma cells) gain additional silencing modifications to those same genes. These results suggest a possible mechanism by which aberrant differentiation, mediated by histone and DNA methylation, instigates tumor progression. BioEssays 29:842,845, 2007. © 2007 Wiley Periodicals, Inc. [source] |