Home About us Contact | |||
Salt Level (salt + level)
Selected AbstractsDiannexin, a Novel Annexin V Homodimer, Protects Rat Liver Transplants Against Cold Ischemia-Reperfusion InjuryAMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2007X.-D. Shen Ischemia/reperfusion injury (IRI) remains an important problem in clinical transplantation. Following ischemia, phosphatidylserine (PS) translocates to surfaces of endothelial cells (ECs) and promotes the early attachment of leukocytes/platelets, impairing microvascular blood flow. Diannexin, a 73 KD homodimer of human annexin V, binds to PS, prevents attachment of leukocytes/platelets to EC, and maintains sinusoidal blood flow. This study analyzes whether Diannexin treatment can prevent cold IRI in liver transplantation. Rat livers were stored at 4°C in UW solution for 24 h, and then transplanted orthotopically (OLT) into syngeneic recipients. Diannexin (200 ,g/kg) was infused into: (i) donor livers after recovering and before reperfusion, (ii) OLT recipients at reperfusion and day +2. Controls consisted of untreated OLTs. Both Diannexin regimens increased OLT survival from 40% to 100%, depressed sALT levels, and decreased hepatic histological injury. Diannexin treatment decreased TNF-,, IL-1,, IP-10 expression, diminished expression of P-selectin, endothelial ICAM-1, and attenuated OLT infiltration by macrophages, CD4 cells and PMNs. Diannexin increased expression of HO-1/Bcl-2/Bcl-xl, and reduced Caspase-3/TUNEL+ apoptotic cells. Thus, by modulating leukocyte/platelet trafficking and EC activation in OLTs, Diannexin suppressed vascular inflammatory responses and decreased apoptosis. Diannexin deserves further exploration as a novel agent to attenuate IRI, and thereby improve OLT function/increase organ donor pool. [source] Effect of Water Phase Salt Content and Storage Temperature on Listeria monocytogenes Survival in Chum Salmon (Oncorhynchus keta) Roe and Caviar (Ikura)JOURNAL OF FOOD SCIENCE, Issue 5 2007Joong-Han Shin ABSTRACT:, Salmon caviar, or ikura, is a ready-to-eat food prepared by curing the salmon roe in a brine solution. Other seasonings or flavorants may be added, depending upon the characteristics of the product desired. Listeria monocytogenes growth is a potential risk, since it can grow at high salt concentrations (>10%) and in some products at temperatures as low as 3 °C. Ikura was prepared from chum salmon (Oncorhynchus keta) roe by adding food-grade NaCl to yield water phase salt contents (WPS) of 0.22% (no added salt), 2.39%± 0.18%, 3.50%± 0.19%, and 4.36%± 0.36%. A cocktail containing L. monocytogenes (ATCC 19114, 7644, 19113) was incorporated into the ikura at 2 inoculum levels (log 2.4 and 4.2 CFU/g), and stored at 3 or 7 °C for up to 30 d. L. monocytogenes was recovered by plating onto modified Oxford media. Aerobic microflora were analyzed on plate count agar. Samples were tested at 0, 5, 10, 20, and 30 d. L. monocytogenes did not grow in chum salmon ikura held at 3 °C during 30 d at any salt level tested; however, the addition of salt at these levels did little to inhibit Listeria growth at 7 °C and counts reached 5 to 6 logs CFU/g. Components in the salmon egg intracellular fluid appear to inhibit the growth of L. monocytogenes. Total aerobic microflora levels were slightly lower in products with higher salt contents. These results indicate that temperature control is critical for ikura and similar products, but that products with lower salt contents can be safe, as long as good refrigeration is maintained. [source] SENSORY DESCRIPTIVE ANALYSIS, SENSORY ACCEPTABILITY AND EXPECTATION STUDIES ON BISCUITS WITH REDUCED ADDED SALT AND INCREASED FIBERJOURNAL OF SENSORY STUDIES, Issue 4 2009MARISA BEATRIZ VÁZQUEZ ABSTRACT The aims of this study were to formulate biscuits with 50% more fiber and 50% less added salt than classic formulations, to describe their sensory characteristics, to measure expectation/sensory acceptability, and to investigate if sensory acceptability for these biscuits was related to the interest in consuming food products with less salt and/or more fiber content. A 2 × 2 factorial design was used to develop four formulations: conventional fiber/conventional salt; conventional fiber/reduced salt; increased fiber/conventional salt; and increased fiber/reduced salt. Differences in the sensory profiles measured by a trained panel were of low magnitude, except for presence and taste of bran. Adolescent and adult consumers evaluated acceptability in three stages: blind with three-digit codes; expectation of the label only; and biscuit + label. The low salt formulations received the lowest scores in the expectation stage, but in the blind and biscuit + label stages acceptability of all formulations was similar. The variables that explained overall acceptance were: measurement stage; formulation salt level; interest in reducing consumption of high salt foods; and interest in consuming bakery products with fiber. PRACTICAL APPLICATIONS Increasing fiber content of biscuits by 40 to 50% helps achieve recommendations to increase fiber intake in daily diets. Also, as biscuits currently on the Argentine and other world markets present two extreme varieties , with or without added salt , formulating a biscuit with 50% less added salt facilitate sodium reduction. In our research we have found that these goals can be achieved without seriously affecting sensory acceptability. We propose the articulation of the necessary strategies with the food industry to market biscuits with less added salt and more fiber for the general population; and the use of these healthier biscuits by institutional food services. [source] EFFECT OF NaCl AND WATER CONTENT ON EXPANSION AND COLOR OF CASSAVA AND POTATO STARCHES ON BAKINGJOURNAL OF TEXTURE STUDIES, Issue 6 2009A. FARAHNAKY ABSTRACT Due to the importance of the role of NaCl in starch-based systems, the effect of NaCl and water content on specific volume, color parameters and moisture loss of cassava and potato starches was studied and response surface methodology was used to find and estimate any nonlinearity between the parameters under study. Glass transition (Tg) is one of the main factors determining the quality parameters of toasted and baked samples. Therefore, Tg of two starch systems (cassava and potato) at low water levels (<20%) as affected by NaCl and water content was investigated. Using experimental modeling, equations were obtained to relate expansion, color change and moisture loss of baked samples to salt level and water content. Differential scanning calorimetry-measured Tg showed that NaCl had negative impact on glass/rubber transition temperature of starch,salt mixtures compared with the samples without NaCl. This could have practical implications in baking, toasting and extrusion processing of starch-based systems. PRACTICAL APPLICATION Due to concerns over health-related issues of high intake of salt by the consumers, recently, the reduction of salt in different food products has become the focus of many industrial projects, conferences and workshops. In breakfast cereals, other than starch type, other added ingredients such as sugar and salt can have profound effects on the physical characteristics of final products. The inclusion of salt in breakfast cereals has some important technological roles, e.g., structure formation and flavor and color generation. Salt plays a key role in the expansion of low-moisture extruded starch-based products. Using the findings of this paper, one may quantify the effects of salt level on expansion and color of baked, toasted or extruded starch-based cereal products and relate the changes to the glass rubber transition of the system. [source] Physiological and biochemical traits involved in the genotypic variability to salt tolerance of Tunisian Cakile maritimaAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009Megdiche Wided Abstract Cakile maritima (family: Brassicaceae) was collected from three provenances belonging to different bioclimatic stages (humid, semi arid and arid) in Tunisia to study their eco-physiological and biochemical responses to salinity. Seedlings were cultivated on inert sand for 20 days under NaCl treatments (0, 100, 200, 400 mm NaCl). Plant response to salinity was provenance- and salt-dependent. At 100 mm NaCl, growth parameters (leaf biomass, area, number per plant and relative growth rate) were improved in plants from Jerba (originating from arid bioclimatic stage) compared with the control, while growth was reduced in those from Tabarka (from humid area). High salt levels (400 mm NaCl) decreased the plant growth in the three provenances, but plants in Tabarka were the most salt sensitive. The relative salt tolerance of plants from Jerba and Bekalta provenances was associated with low levels of malondialdehyde as well as of electrolyte leakage and endoproteolytic activity. Salt reduced leaf hydration, the decrease in water content being dose-dependent and more pronounced in Tabarka. Increase in salinity led to significant increase in leaf succulence and decrease in leaf water potential, especially in Jerba plants. The plants from the latter displayed the highest leaf levels of Na+ and Cl,, proline, soluble carbohydrates, soluble proteins, and polyphenols. Overall, the higher salt tolerance of plants from Jerba provenance, and to a lower extent of those from Bekalta, may be partly related to their better capacity for osmotic adjustment and to limit oxidative damage when salt-challenged. Résumé Cakile maritima a été collecté (famille des Brassicaceae) dans trois provenances appartenant à des étages bioclimatiques différentes (humide, semi-aride et aride) de la Tunisie, dans le but d'étudier leurs réponses éco-physiologique et biochimique à la salinité. Des plantules ont été cultivées dans du sable inerte pendant vingt jours avec des doses croissantes de NaCl (0, 100, 200 et 400 mm NaCl). La réponse de Cakile maritima dépend de la provenance et de la salinité du milieu. A 100 mm de NaCl, les paramètres de croissance (biomasse, surface et nombre des feuilles par plante ainsi que le taux de la croissance relative) ont été améliorés chez Djerba (zone bioclimatique aride) par comparaison aux plantes témoins, tandis que la croissance a été réduite chez Tabarka (zone humide). A la plus forte dose de sel (400 mm), une réduction de la croissance des trois provenances a été enregistrée avec une nette sensibilité chez les plantes de la provenance Tabarka. La tolérance relative des deux provenances Djerba et Bekalta est associée à une faible teneur en malondialdéhyde ainsi qu'une fuite d'électrolyte et activité endo-protéolytique modérées. Le traitement salin a réduit l'hydratation des feuilles et cette diminution du contenu en eau est dose-dépendante et elle est plus prononcée chez Tabarka. En outre, l'augmentation de la salinité du milieu a entrainé une élévation de la succulence des feuilles concomitante à une diminution du potentiel hydrique notamment chez Djerba. Les plantes de cette dernière ont été les plus riches en Na+ et Cl - , en proline, carbohydrates, en protéines solubles et en polyphénols. En général, la tolérance au sel de la provenance Djerba, et à moindre degré Bekalta, est en partie reliée à la meilleure capacité d'ajustement osmotique et la limitation des dommages oxydatifs sous stress salin. [source] Effects of Leuconostoc mesenteroides Starter Culture on Fermentation of Cabbage with Reduced Salt ConcentrationsJOURNAL OF FOOD SCIENCE, Issue 5 2007Suzanne Johanningsmeier ABSTRACT:, Sauerkraut fermentations rely upon selection of naturally occurring lactic acid bacteria by addition of 2.0% to 2.25% granulated sodium chloride (NaCl) to shredded cabbage. Excess brine generated is a waste product with high levels of organic material (BOD) and nonbiodegradable NaCl. The objective was to determine whether addition of Leuconostoc mesenteroides starter culture to reduced-salt cabbage fermentations would yield sauerkraut with reproducible and acceptable chemical composition and sensory qualities. Shredded cabbage was salted with 0.5%, 1.0%, or 2.0% NaCl (wt/wt) at 2 starter culture levels, none or L. mesenteroides strain LA 81, ATCC 8293 (106 CFU/g). Fermentation products were quantified by high-performance liquid chromatography, and pH was measured during the initial stages of fermentation and after 10 mo storage at 18 °C. A trained descriptive sensory panel used category scales to rate the flavor and texture of selected sauerkrauts. A modified Kramer shear test was used to measure firmness. Cabbage fermented with L. mesenteroides consistently resulted in sauerkraut with firm texture and reduced off-flavors across all salt levels (P < 0.05). Conversely, sauerkraut quality was highly variable, with softening and off-flavors occurring as salt concentrations were decreased in natural fermentations (P < 0.05). Fermentations were rapid, with a more uniform decline in pH when starter culture was added. L. mesenteroides addition to cabbage fermentations ensured that texture and flavor quality were retained, while allowing 50% NaCl reduction. Application of this technology to commercial sauerkraut production could improve the uniformity of fermentations and substantially reduce generation of nonbiodegradable chloride waste. [source] |