Home About us Contact | |||
Salinity Concentrations (salinity + concentration)
Selected AbstractsVariation in toxin compositions of two harmful raphidophytes, Chattonella antiqua and Chattonella marina, at different salinitiesENVIRONMENTAL TOXICOLOGY, Issue 2 2002Shahroz Mahean Haque Abstract Toxin compositions of the two species of raphidophytes, Chattonella antiqua (Hada) Ono and Chattonella marina (Subrahmanyan) Hara et Chihara, were investigated at different salinities under laboratory conditions. C. antiqua contained toxin components CaTx-I, CaTx-II, CaTx-III, and CaTx-IV, which corresponded to brevetoxin components PbTx-1, PbTx-2, PbTx-3, and oxidized PbTx-2. Similarly, C. marina included CmTx-I, CmTx-II, CmTx-III, and CmTx-IV corresponding to PbTx-2, PbTx-9, PbTx-3, and oxidized PbTx-2. Toxin yields in both species varied markedly with a change in salinity concentration. In C. antiqua CaTx-I, CaTx-II, and CaTx-III peaked at 25 P.P.t. with yields of 0.99, 0.42, and 2.90 pg/cell, but the highest yield (2.35 pg/cell) of CaTx-IV was attained at 30 P.P.t. The yields of all CaTx components decreased sharply at salinities exceeding 30 P.P.t. On the other hand, C. marina yielded higher proportions of CmTx-I (0.55 pg/cell) and CmTx-III (2.50 pg/cell) at 25 P.P.t. However, CmTx-IV was present in its highest amount (1.65 pg/cell) at 30 P.P.t., as seen in C. antiqua. A small amount of CmTx-II was also detected at 20 P.P.t.,35 P.P.t. Both species showed the highest ichthyotoxicities at 25 P.P.t., at which the maximum cell division rate was obtained. © 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 113,118, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/tox.10039 [source] Nutritional condition of Anguilla anguilla starved at various salinities during the elver phaseJOURNAL OF FISH BIOLOGY, Issue 2 2005A. Rodríguez The effects of food deprivation and environmental salinity (<1, 10 and 20) on survival, fish morphology, organization of the digestive system and body lipid reserves in European eel Anguilla anguilla during the transition from glass eel to elver, were evaluated. Fasted elvers kept in fresh water were able to withstand starvation for >60 days, while those in brackish environments (salinity 10 and 20) reached the level of irreversible starvation at 37 and 35 days, respectively. The high level of lipid reserves contained in liver inclusions and the abdominal cavity (perivisceral deposits) in elvers might explain their long resistance to starvation and differences in fasting tolerance under different salinities. Fasting resulted in a significant reduction of the elvers' condition factor and body depth. There were severe histopathological changes in the digestive system and musculature, such as the alteration of the liver organization, and hepatic glycogen and lipid content, shrinkage of enterocytes and reduction of their height, pancreas degeneration, autolysis of the oesophageal and intestinal mucosa and disarrangement of myofibrils and degeneration of trunk musculature. Degeneration of the oesophageal and intestinal mucosa as a consequence of fasting might have impaired digestive and osmoregulatory functions in feed-deprived fish, directly affecting the tolerance to starvation and survival. Length of food deprivation was associated with a significant increase in mortality, coefficient of variation, cannibalism and point of no return at high salinities. Mortality was dependent on food deprivation and salinity concentrations. Environmental salinity directly influenced the ability of elvers to withstand starvation; once glass eels metamorphosed into elvers, they tolerated starvation better in fresh water than in brackish environments. [source] Tolerance of Pinus taeda and Pinus serotina to low salinity and flooding: Implications for equilibrium vegetation dynamicsJOURNAL OF VEGETATION SCIENCE, Issue 1 2008Benjamin Poulter Abstract Questions: 1. Do pine seedlings in estuarine environments display discrete or continuous ranges of physiological tolerance to flooding and salinity? 2. What is the tolerance of Pinus taeda and P. serotina to low salinity and varying hydrologic conditions? 3. Are the assumptions for ecological equilibrium met for modeling plant community migration in response to sea-level rise? Location: Albemarle Peninsula, North Carolina, USA. Methods: In situ observations were made to quantify natural pine regeneration and grass cover along a salinity stress gradient (from marsh, dying or dead forest, to healthy forest). A full-factorial greenhouse experiment was set up to investigate mortality and carbon allocation of Pinus taeda and P. serotina to low-salinity conditions and two hydrology treatments over 6 months. Treatments consisted of freshwater and two salinity levels (4 ppt and 8 ppt) under either permanently flooded or periodically flushed hydrologic conditions. Results: Natural pine regeneration was common (5,12 seedlings per m2) in moderate to well-drained soils where salinity concentrations were below ca. 3.5 ppt. Pine regeneration was generally absent in flooded soils, and cumulative mortality was 100% for 4 and 8 ppt salinity levels under flooded conditions in the greenhouse study. Under weekly flushing conditions, mortality was not significantly different between 0 and 4 ppt, confirming field observations. Biomass accumulation was higher for P. taeda, but for both pine species, the root to shoot ratio was suppressed under the 8 ppt drained treatment, reflecting increased below-ground stress. Conclusions: While Pinus taeda and P. serotina are commonly found in estuarine ecosystems, these species display a range of physiological tolerance to low-salinity conditions. Our results suggest that the rate of forest migration may lag relative to gradual sea-level rise and concomitant alterations in hydrology and salinity. Current bioclimate or landscape simulation models assume discrete thresholds in the range of plant tolerance to stress, especially in coastal environments, and consequently, they may overestimate the rate, extent, and timing of plant community response to sea-level rise. [source] Nucleation and facilitation in salt pans in Mediterranean salt marshesJOURNAL OF VEGETATION SCIENCE, Issue 6 2001A.E. Rubio-Casal Tutin et al. (1992) Abstract. Arthrocnemum macrostachyum is a perennial species acting as a primary colonizer of salt pans in Mediterranean high salt marshes. Salicornia ramosissima, an annual, occurs in salt pans under Arthrocnemum canopies and in open areas. The aim of this study was to analyse, in wild populations and a transplant experiment, how S. ramosissima population dynamics and growth are affected by A. macrostachyum. The environmental conditions within the patches of Arthrocnemum were less stressful than in the open areas, with lower radiation levels and salinity concentrations. In the inner areas of A. macrostachyum patches, density-dependent mortality processes of S. ramosissima seedlings led to low densities of adult individuals with greater morphological development and reproductive success than in open areas. However, at the edges of Arthrocnemum patches facilitation of seedling survival favoured high densities. Environmental stress hindered development, decreased reproduction and premature death. These results are in agreement with the general theory of factors controlling vegetation distribution that biotic interactions dominate in low stress environments, while abiotic interactions dominate under harsher environmental conditions. A. macrostachyum plays an essential role in the succession in these salt pans, facilitating seed production and stimulating nucleation processes in S. ramosissima. [source] |