Home About us Contact | |||
Sap Flow Rate (sap + flow_rate)
Selected AbstractsSap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, ChinaHYDROLOGICAL PROCESSES, Issue 10 2010Huang Lei Abstract Artemisia ordosica is considered as an excellent sand-fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10-year-old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water-carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd. [source] Below-ground hydraulic conductance is a function of environmental conditions and tree size in Scots pineFUNCTIONAL ECOLOGY, Issue 6 2007J. MARTÍNEZ-VILALTA Summary 1Variations in water tension in a transpiring tree cause elastic changes in stem diameter. To better understand the dynamics of these variations, stem diameter changes and sap flow rates were monitored simultaneously in trees from two Scots pine chronosequences in Scotland. 2Tree below-ground hydraulic conductance (kbg) was estimated from the relationship between leaf-specific sap flow rates and the difference between stem and soil water potentials estimated from diameter variations in the stem. 3In a given tree, kbg varied both within and among days, with conductance increasing as a function of sap flow and evaporative demand. These patterns could be explained in terms of a composite model of root water transport and possible changes in the gating of aquaporins. 4We interpreted these trends of increasing kbg with evaporative demand as a mechanism to enhance the ability of trees to control leaf water potential and keep it within physiologically acceptable limits, with potential implications for our general understanding of plant water relations, and for the estimation and modelling of ecosystem water fluxes. 5Across trees, kbg declined with increasing tree age/size, but the proportional contribution of below-ground to whole-tree hydraulic resistance also declined. This is consistent with an increase in below-ground carbon allocation in old/tall trees and a partial acclimation of tall trees to hydraulic limitations. It is argued that these trends have to be considered when discussing the importance of tree height for water transport and growth. [source] Xylem sap flow as a major pathway for oxygen supply to the sapwood of birch (Betula pubescens Ehr.)PLANT CELL & ENVIRONMENT, Issue 11 2003D. GANSERT ABSTRACT The role of xylem sap flow as an aqueous pathway for oxygen supply to the wood parenchyma of Betula pubescens saplings was investigated. Using micro-optode sensors the oxygen status of the sapwood was quantified in relation to mass flow of xylem sap. Sap flow was gradually reduced by an increasing oxygen depletion in the root space. The effect of sap flow on radial O2 transport between stem and atmosphere was assessed by a stoichiometrical approach between respiratory CO2 production and O2 consumption. Restriction of sap flow set in 36.5 h after the onset of O2 depletion, and was complete after 71 h. Interruption of sap flow drastically increased the O2 deficit in the sapwood to 70%. Sap flow contributed about 60% to the total oxygen supply to the sapwood. Diurnal O2 flow rates varied between 3 and 6.3 nmol O2 m,2 leaf area (LA) s,1 during night- and daytime, respectively. Maximum O2 flow rates of 20 nmol O2 m,2 LA s,1 were reached at highest sap flow rates of 5.7 mmol H2O m,2 LA s,1. Sap flow not only affected the oxygen status of the sapwood but also had an effect on radial O2 transport between stem and atmosphere. [source] |