Sand Surface (sand + surface)

Distribution by Scientific Domains


Selected Abstracts


Wind erosion characteristics of Sahelian surface types

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2010
Thomas Maurer
Abstract The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Time domain characteristics of hoof-ground interaction at the onset of stance phase

EQUINE VETERINARY JOURNAL, Issue 7 2006
J. F. BURN
Summary Reasons for performing study: Little is known about the interaction of the hoof with the ground at the onset of stance phase although is it widely believed that high power collisions are involved in the aetiopathology of several conditions causing lameness. Objectives: To answer 3 questions regarding the fundamental nature of hoof-ground collision: (1) is the collision process deterministic for ground surfaces that present a consistent mechanical interface (2) do collision forces act on the hoof in a small or large range of directions and (3) Is the hoof decelerated to near-zero velocity by the initial deceleration peak following ground contact? Methods: Hoof acceleration during the onset of stance phase was recorded using biaxial accelerometry for horses trotting on a tarmac surface and on a sand surface. Characteristics of the collision process were identified both from vector plots and time series representations of hoof acceleration, velocity and displacement. Results: The response of the hoof to collision with smooth tarmac was predominantly deterministic and consistent with the response of a spring-damper system following shock excitation. The response to collision with sand was predominantly random. The deceleration peak following ground contact did not decelerate the hoof to near-zero velocity on tarmac but appeared to on sand. On both surfaces, collision forces acted on the hoof in a wide range of directions. Conclusions: The study suggests the presence of stiff, visco-elastic structures within the foot that may act as shock absorbers isolating the limb from large collision forces. Potential relevance: The study indicates objectives for future in vivo and in vitro research into the shock absorbing mechanism within the equine foot; and the effects of shoe type and track surface properties on the collision forces experienced during locomotion. Studies of this nature should help to establish a link between musculoskeletal injury, hoof function and hoof-ground interaction if, indeed, one exists. [source]


Shorebird predation of horseshoe crab eggs in Delaware Bay: species contrasts and availability constraints

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2007
S. GILLINGS
Summary 1Functional responses , the relationship between resource intake rate and resource abundance , are widely used in explaining predator,prey interactions yet many studies indicate that resource availability is crucial in dictating intake rates. 2For time-stressed migrant birds refuelling at passage sites, correct decisions concerning patch use are crucial as they determine fattening rates and an individual's future survival and reproduction. Measuring availability alongside abundance is essential if spatial and temporal patterns of foraging are to be explained. 3A suite of shorebird species stage in Delaware Bay where they consume horseshoe crab Limulus polyphemus eggs. Several factors including spawning activity and weather give rise to marked spatial and temporal variation in the abundance and availability of eggs. We undertook field experiments to determine and contrast the intake rates of shorebird species pecking for surface and probing for buried eggs. 4Whether eggs were presented on the sand surface or buried, we demonstrate strong aggregative responses and rapid depletion (up to 80%). Depletion was greater at deeper depths when more eggs were present. No consistent give-up densities were found. Type II functional responses were found for surface eggs and buried eggs, with peck success twice as high in the former. Maximum intake rates of surface eggs were up to 83% higher than those of buried eggs. 5Caution is needed when applying functional responses predicted on the basis of morphology. Our expectation of a positive relationship between body size and intake rate was not fully supported. The smallest species, semipalmated sandpiper, had the lowest intake rate but the largest species, red knot, achieved only the same intake rate as the mid-sized dunlin. 6These functional responses indicate that probing is rarely more profitable than pecking. Currently, few beaches provide egg densities sufficient for efficient probing. Areas where eggs are deposited on the sand surface are critical for successful foraging and ongoing migration. This may be especially true for red knot, which have higher energetic demands owing to their larger body size yet appear to have depressed intake rates because they consume smaller prey than their body size should permit. [source]


Wind erosion characteristics of Sahelian surface types

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2010
Thomas Maurer
Abstract The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Soil type and microtopography influencing feeding above and below ground by the pine weevil Hylobius abietis

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2005
Göran Nordlander
Abstract 1,The influence of soil type and microtopography on above and below ground feeding by adult pine weevils Hylobius abietis (L.) (Coleoptera: Curculionidae) was evaluated in a field experiment with enclosed weevil populations of known size. 2,Four soil treatments, each with a food source at the centre, were presented within each enclosure: (i) a flat surface with fine-grained, cultivated humus; (ii) a flat surface with sand; (iii) a conical mound of sand; and (iv) a conical pit in sand. The food source consisted of a stem section of Scots pine Pinus sylvestris L. extending both above and below ground. 3,The majority of feeding on the half buried stem sections occurred below ground; only 2.7% of the total bark area consumed was situated above ground. The variation over time in bark area consumed was not significantly associated with any of the tested weather factors. 4,The amount of feeding was 10-fold higher on food sources placed in fine-grained humus than those in areas of flat sand. 5,Less pine bark was consumed on mounds of sand than flat sand surfaces, and there was more feeding in sandy pits than on flat sand. These effects on feeding are explained by the observation that the weevils had difficulties climbing the sandy slopes (27° gradient). 6,We conclude that pine weevil damage to conifer seedlings can be considerably reduced by planting on mounds of pure mineral soil and that planting deeply in the soil increases the risk of damage. [source]