Sand Samples (sand + sample)

Distribution by Scientific Domains


Selected Abstracts


Sedimentological, modal analysis and geochemical studies of desert and coastal dunes, Altar Desert, NW Mexico

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2007
J. J. Kasper-Zubillaga
Abstract Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz-rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz-rich sediments. The Sr values are also linked to the presence of Ca-bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz-rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain-size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Textural and compositional controls on modern beach and dune sands, New Zealand

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2007
J. J. Kasper-Zubillaga
Abstract Textural, compositional, physical and geophysical determinations were carried out on 111 beach and dune sand samples from two areas in New Zealand: the Kapiti,Foxton coast sourced by terranes of andesite and greywackes and the Farewell Spit,Wharariki coast sourced by a wide variety of Paleozoic terranes. Our aim is to understand how long-shore drift, beach width and source rock control the sedimentological and petrographic characteristics of beach and dune sands. Furthermore, this study shows the usefulness of specific minerals (quartz, plagioclase with magnetite inclusions, monomineralic opaque grains) to interpret the physical processes (fluvial discharges, long-shore currents, winds) that distribute beach and dune sands in narrow and wide coastal plains. This was done by means of direct (grain size and modal analyses) and indirect (specific gravity, magnetic/non-magnetic separations M/NM, magnetic susceptibility measurements, hysteresis loops) methods. Results are compared with beach sands from Hawaii, Oregon, the Spanish Mediterranean, Elba Island and Southern California. Compositionally, the Kapiti,Foxton sands are similar to first-order immature sands, which retain their fluvial signature. This results from the high discharge of rivers and the narrow beaches that control the composition of the Kapiti,Foxton sands. The abundance of feldspar with magnetite inclusions controls the specific gravity of the Kapiti,Foxton sands due to their low content of opaque minerals and coarse grain size. Magnetic susceptibility of the sands is related mainly to the abundance of feldspars with Fe oxides, volcanic lithics and free-opaque minerals. The Farewell Spit,Wharariki sands are slightly more mature than the Kapiti,Foxton sands. The composition of the Farewell Spit,Wharariki sands does not reflect accurately their provenance due to the prevalence of long-shore drift, waves, little river input and a wide beach. Low abundance of feldspar with magnetite inclusions and free opaque grains produces poor correlations between specific gravity (Sg) and Fe oxide bearing minerals. The small correlation between opaque grains and M/NM may be related to grain size. The magnetic susceptibility of Farewell Spit,Wharariki sands is low due to the low content of grains with magnetite inclusions. Hysteresis and isothermal remnant magnetization (IRM) agree with the magnetic susceptibility values. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The termination of the last major phase of aeolian sand movement, coastal dunefields, Denmark

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2006
Lars B. Clemmensen
Abstract Optically stimulated luminescence (OSL) dating of sand samples from stabilized (or inactive) coastal dunes in Denmark provides information on the age of the termination phase of the last major aeolian activity period. A total of 26 sand samples were taken from four different coastal dunefields around the North Sea, Skagerrak and Kattegat coasts of Denmark. The OSL dates indicate that the last major phase of aeolian activity terminated between ad 1860 and 1905. Most of the dunes examined in this study were active around 1820, during a period documented to have been very stormy. A dune management scheme started around 1792, and this no doubt was a major cause of dunefield stabilization, but an overall decline of storminess, particularly spring and summer storminess, around the end of the 19th century must also have contributed to the increasing inactivity of coastal dunes. The new OSL dates on aeolian sand movement agree well with historical data and data from topographic maps on dune movement. This agreement supports the observation from earlier work that OSL dating of recent aeolian sand movement is accurate over the last few decades to centuries. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Random porosity fields and their influence on the stability of granular media

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2008
José E. Andrade
Abstract It is well established that the mechanical behavior of granular media is strongly influenced by the media's microstructure. In this work, the influence of the microstructure is studied by integrating advances in the areas of geostatistics and computational plasticity, by spatially varying the porosity on samples of sand. In particular, geostatistical tools are used to characterize and simulate random porosity fields that are then fed into a nonlinear finite element model. The underlying effective mechanical response of the granular medium is governed by a newly developed elastoplastic model for sands, which readily incorporates spatial variability in the porosity field at the meso-scale. The objective of this study is to assess the influence of heterogeneities in the porosity field on the stability of sand samples. One hundred and fifty isotropic and anisotropic samples of dense sand are failed under plane-strain compression tests using Monte Carlo techniques. Results from parametric studies indicate that the axial strength of a specimen is affected by both the degree and orientation of anisotropy in heterogeneous porosity values with anisotropy orientation having a dominant effect, especially when the bands of high porosity are aligned with the natural orientation of shear banding in the specimen. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Generalized trapezoidal numerical integration of an advanced soil model

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2008
Yunming Yang
Abstract This paper investigates the numerical performance of the generalized trapezoidal integration rule by using an advanced soil model. The generalized trapezoidal integration rule can include many other integration algorithms by adjusting a single parameter , ranging from 1 to 0. The soil model used is the recently developed middle surface concept (MSC) sand model which simulates different soil response characteristics by using different pseudo-yield functions. The generalized trapezoidal rule and MSC sand model are used to simulate the responses of sand samples with different relative densities under various initial and loading conditions. Instead of a single step, multiple loading steps bring the sample to the vicinity of failure. These comprehensive investigations examine and compare the influences of various values of , on the numerical solution of integrated constitutive equations, the convergence of Newton's iterative scheme, and the integration accuracy. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Microbial strengthening of loose sand

LETTERS IN APPLIED MICROBIOLOGY, Issue 2 2010
B.L. Banagan
Abstract Aims:, To test whether the addition of Flavobacterium johnsoniae could increase the strength of saturated Ottawa 30 sand. Methods and Results:, A box model was built that simulates groundwater-like flow through a main sand compartment. Strength tests were performed at seven locations and at two depths, 10·8 and 20·3 cm below the top of the tank, using a vane shear device before and after the addition of bacteria. After the addition of Fl. johnsoniae, sand samples were obtained from multiple sampling ports on the vertical sides of the box model. The presence of a bacterial biofilm was confirmed by staining these sand samples with SYTO-9 and Alexa Fluor 633 and viewing with a confocal microscope. The average shear strength increases after the addition of Fl. johnsoniae were 15·2,87·5%, depending on the experimental conditions. Conclusions:,Flavobacterium johnsoniae caused a statistically significant increase in the strength of saturated Ottawa 30 sand. Significance and Impact of the Study:, Biofilm-forming bacteria can increase the shear strength of saturated sand. The addition of biofilm-forming bacteria to a building site may be an alternate method to mitigate the effects of liquefaction. [source]


SAND FOR ROMAN GLASS PRODUCTION: AN EXPERIMENTAL AND PHILOLOGICAL STUDY ON SOURCE OF SUPPLY*

ARCHAEOMETRY, Issue 3 2006
A. SILVESTRI
This paper reports the results of an experimental study performed on Campanian littoral sand, together with a careful philological analysis of Pliny's text concerning the production of glass using the above sand in order to verify its suitability. Accurate chemical and mineralogical characterization of sand samples and experimental glasses was carried out, proving the unsuitability of sand for glass production in its original state. Taking into account both the results of the philological analysis of Pliny's text and the mineralogical assemblage of the sand, a new hypothesis regarding Roman glass-making technology is proposed and tested here. The technology implies the production of ,quartz-enriched' sand by means of selective grindings according to the different degrees of hardness and cleavage of the mineralogical phases. Melting experiments, carried out on treated sand and in the temperature range compatible with Roman technology, yielded a glass with composition similar to those of typical Roman glasses. Therefore, new perspectives on the sources of supply of raw materials, hitherto debated, are opened up. [source]


Characteristics of Oil Sources from the Chepaizi Swell, Junggar Basin, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
LIU Luofu
Abstract: So far there has been no common opinion on oil source of the Chepaizi swell in the Junggar Basin. Therefore, it is difficult to determine the pathway system and trend of hydrocarbon migration, and this resulted in difficulties in study of oil-gas accumulation patterns. In this paper, study of nitrogen compounds distribution in oils from Chepaizi was carried out in order to classify source rocks of oils stored in different reservoirs in the study area. Then, migration characteristics of oils from the same source were investigated by using nitrogen compounds parameters. The results of nitrogen compounds in a group of oil/oil sand samples from the same source indicate that the oils trapped in the Chepaizi swell experienced an obvious vertical migration. With increasing migration distance, amounts and indices of carbazoles have a regular changing pattern (in a fine linear relationship). By using nitrogen compounds techniques, the analyzed oil/oil sand samples of Chepaizi can be classified into two groups. One is the samples stored in reservoir beds of the Cretaceous and Tertiary, and these oils came from mainly Jurassic source rock with a small amount of Cretaceous rock; the other is those stored in the Jurassic, Permian and Carboniferous beds, and they originated from the Permian source. In addition, a sample of oil from an upper Jurassic reservoir (Well Ka 6), which was generated from Jurassic coal source rock, has a totally different nitrogen compound distribution from those of the above-mentioned two groups of samples, which were generated from mudstone sources. Because of influence from fractionation of oil migration, amounts and ratios of nitrogen compounds with different structures and polarities change regularly with increasing migrating distance, and as a result the samples with the same source follow a good linear relationship in content and ratio, while the oil samples of different sources have obviously different nitrogen compound distribution owing to different organic matter types of their source rocks. These conclusions of oil source study are identical with those obtained by other geochemical bio-markers. Therefore, nitrogen compounds are of great significance in oil type classification and oil/source correlation. [source]