Home About us Contact | |||
SDF-1
Terms modified by SDF-1 Selected AbstractsA novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursorsDEVELOPMENTAL DYNAMICS, Issue 6 2010Rizwan Rehimi Abstract The cloaca acts as a common chamber into which gastrointestinal and urogenital tracts converge in lower vertebrates. The distal end of the cloaca is guarded by a ring of cloacal muscles or sphincters, the equivalent of perineal muscles in mammals. It has recently been shown that the development of the cloacal musculature depends on hindlimb muscle formation. The signaling molecules responsible for the outward migration of hindlimb myogenic precursors are not known. Based on the expression studies for CXCR4 and SDF-1, we hypothesized a role of this signaling pair during cloacal muscle precursor migration. The aim of our study was to investigate the role of SDF-1/CXCR4 during cloacal muscle precursor migration in the chicken embryos. We show that SDF-1 is expressed in the cloacal region, and by experimentally manipulating the SDF-1/CXCR4 signaling, we can show that SDF-1 guides the migration of CXCR4-expressing cloacal muscle precursors. Developmental Dynamics 239:1622,1631, 2010. © 2010 Wiley-Liss, Inc. [source] Cloning and characterization of SDF-1,, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous systemEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2000Marc Gleichmann Abstract The cytokines SDF-1, and -1, are two alternatively spliced variants of the CXC (,) chemokines that are highly conserved among species. SDF-1, was shown to function as a B-cell maturation factor, a ligand for the CXCR4 (LESTR/fusin) chemokine receptor, thereby inhibiting replication of T cell-tropic HIV-1 strains and inducing cell death in human neuronal cell lines. In this report the cloning of the rat SDF-1, cDNA and a new SDF-1 isoform, SDF-1,, are presented. Using Northern blot analysis, the expression pattern of both isoforms was studied in different tissues and it is shown that during postnatal development of the central and peripheral nervous system SDF-1,- and SDF-1,-mRNA expression is inversely regulated. Whilst SDF-1,-mRNA is the predominant isoform in embryonic and early postnatal nerve tissue, SDF-1,-mRNA is expressed at higher levels in adulthood. After peripheral nerve lesion a transient increase in SDF-1,-mRNA expression is observed. As revealed by in situ hybridization, neurons and Schwann cells are the main cellular sources of both SDF-1, and SDF-1, mRNAs in the nervous system. Computer-assisted analysis revealed that both transcripts encode secreted peptides with putative proteolytic cleavage sites which might generate novel neuropeptides. [source] Structure,function relationship of novel X4 HIV-1 entry inhibitors , L- and D-arginine peptide-aminoglycoside conjugatesFEBS JOURNAL, Issue 24 2007Ravi Hegde We present the design, synthesis, anti-HIV-1 and mode of action of neomycin and neamine conjugated at specific sites to arginine 6- and 9-mers d - and l -arginine peptides (APACs). The d -APACs inhibit the infectivity of X4 HIV-1 strains by one or two orders of magnitude more potently than their respective l -APACs. d -arginine conjugates exhibit significantly higher affinity towards CXC chemokine receptor type 4 (CXCR4) than their l -arginine analogs, as determined by their inhibition of monoclonal anti-CXCR4 mAb 12G5 binding to cells and of stromal cell-derived factor 1, (SDF-1,)/CXCL12 induced cell migration. These results indicate that APACs inhibit X4 HIV-1 cell entry by interacting with CXCR4 residues common to glycoprotein 120 and monoclonal anti-CXCR4 mAb 12G5 binding. d -APACs readily concentrate in the nucleus, whereas the l -APACs do not. 9-mer- d -arginine analogues are more efficient inhibitors than the 6-mer- d -arginine conjugates and the neomycin- d -polymers are better inhibitors than their respective neamine conjugates. This and further structure,function studies of APACs may provide new target(s) and lead compound(s) of more potent HIV-1 cell entry inhibitors. [source] Chemokine expression in the white matter spinal cord precursor niche after force-defined spinal cord contusion injuries in adult ratsGLIA, Issue 8 2010Friederike Knerlich-Lukoschus Abstract Inflammatory cascades induced by spinal cord injuries (SCI) are localized in the white matter, a recognized neural stem- and progenitor-cell (NSPC) niche of the adult spinal cord. Chemokines, as integrators of these processes, might also be important determinants of this NSPC niche. CCL3/CCR1, CCL2/CCR2, and SDF-1,/CXCR4 were analyzed in the ventrolateral white matter after force defined thoracic SCI: Immunoreactivity (IR) density levels were measured 2 d, 7 d, 14 d, and 42 d on cervical (C 5), thoracic (T 5), and lumbar (L 5) levels. On day post operation (DPO) 42, chemokine inductions were further evaluated by real-time RT-PCR and Western blot analyses. Cellular phenotypes were confirmed by double labeling with markers for major cell types and NSPCs (nestin, Musashi-1, NG2, 3CB2, BLBP). Mitotic profiles were investigated in parallel by BrdU labeling. After lesion, chemokines were induced in the ventrolateral white matter on IR-, mRNA-, and protein-level. IR was generally more pronounced after severe lesions, with soaring increases of CCL2/CCR2 and continuous elevations of CCL3/CCR1. SDF-1, and CXCR4 IR induction was focused on thoracic levels. Chemokines/-receptors were co-expressed with astroglial, oligodendroglial markers, nestin, 3CB2 and BLBP by cells morphologically resembling radial glia on DPO 7 to DPO 42, and NG2 or Musashi-1 on DPO 2 and 7. In the white matter BrdU positive cells were significantly elevated after lesion compared with sham controls on all investigated time points peaking in the early time course on thoracic level: Here, chemokines were co-expressed by subsets of BrdU-labeled cells. These findings suggest an important role of chemokines/-receptors in the subpial white matter NSPC niche after SCI. © 2010 Wiley-Liss, Inc. [source] Transient expression of endothelins in the amoeboid microglial cells in the developing rat brainGLIA, Issue 6 2006Chun-Yun Wu Abstract Amoeboid microglial cells (AMC) which transiently exist in the corpus callosum in the postnatal rat brain expressed endothelins (ETs), specifically endothelin-1 (ET-1) and ET3 as revealed by real time RT-PCR. ET immunoreactive AMC occurred in large numbers at birth, but were progressively reduced with age and were undetected in 14 days. In rats subjected to hypoxia exposure, ET immunoexpression in AMC was reduced but the incidence of apoptotic cells was not increased when compared with the control suggesting that this was due to its downregulation that may help regulate the constriction of blood vessels bearing ET-A receptor. AMC were endowed ET-B receptor indicating that ET released by the cells may also act via an autocrine manner. In microglia activated by lipopolysaccharide (LPS), ET-1 mNA expression coupled with that of monocyte chemoattractant protein (MCP-1) and stromal derived factor-1 (SDF-1) was markedly increased; ET-3 mRNA, however, remained unaffected. AMC exposed to oxygen glucose deprivation (OGD) in vitro resulted in increase in both ET-1 and ET-3 mRNA expression. It is suggested that the downregulated ETs expression in vivo of AMC subjected to hypoxia as opposed to its upregulated expression in vitro may be due to the complexity of the brain tissue. Furthermore, the differential ET-1 and ET-3 mRNA expression in LPS and OGD treatments may be due to different signaling pathways independently regulating the two isoforms. The present novel finding has added microglia as a new cellular source of ET that may take part in multiple functions including regulating vascular constriction and chemokines release. © 2006 Wiley-Liss, Inc. [source] Isolated human astrocytes are not susceptible to infection by M- and T-tropic HIV-1 strains despite functional expression of the chemokine receptors CCR5 and CXCR4 ,GLIA, Issue 3 2001Agnès Boutet Abstract Within the brain, HIV-1 targets the microglia and astrocytes. Previous studies have reported that viral entry into astrocytes is independent of CD4, in contrast to microglia. We aimed to determine whether chemokine receptors play a role in mediating CD4-independent HIV-1 entry into astrocytes. We found that embryonic astrocytes and microglial cells express CCR5, CCR3, and CXCR4 transcripts. Intracellular calcium levels in astrocytes were found to increase following application of RANTES, MIP-1, (CCR5-agonist), SDF-1, (CXCR4-agonist), but not eotaxin (CCR3-agonist). In microglial cells, eotaxin was also able to modulate internal calcium homeostasis. CD4 was not present at the cell surface of purified astrocytes but CD4 mRNA could be detected by RT-PCR. Neither HIV-19533 (R5 isolate) nor HIV-1LAI (X4 isolate) penetrated into purified astrocytes. In contrast, mixed CNS cell cultures were infected by HIV-19533 and this was inhibited by anti-CD4 mAb in 4/4 tested cultures and by anti-CCR5 mAb in 2/4. Thus, the HIV-1 R5 strain requires CD4 to penetrate into brain cells, suggesting that CCR5 cannot be used as the primary receptor for M-tropic HIV-1 strains in astrocytes. Moreover, inconstant inhibition of HIV-1 entry by anti-CCR5 mAb supports the existence of alternative coreceptors for penetration of M-tropic isolates into brain cells. GLIA 34:165,177, 2001. © 2001 Wiley-Liss, Inc. [source] Increased expression of SDF-1/CXCR4 is associated with lymph node metastasis of invasive micropapillary carcinoma of the breastHISTOPATHOLOGY, Issue 6 2009Fangfang Liu Aims:, Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 are implicated in tumour chemotaxis and metastasis. The aim was to examine their roles in the metastasis of invasive micropapillary carcinoma (IMPC) of the breast, a tumour with a high propensity for nodal spread. Methods and results:, We compared the expression of SDF-1 and CXCR4 in 103 cases of breast cancer containing IMPC components with a control group of 96 cases of invasive ductal carcinoma (IDC), not otherwise specified type by immunohistochemistry and chemical in situ hybridization (CISH). The results showed that the predominant cytoplasmic expression of both SDF-1 and CXCR4 was greater in tumour cells of the IMPC components than in those of the non-IMPC components and the control IDC cases, and was correlated significantly with the number of positive lymph nodes (P < 0.05). SDF-1 expression on cell membranes was less frequently identified in IMPC than IDC (P = 0.021). Immunohistochemical detection of SDF-1 in endothelial cells of lymphatic vessels was more common in IMPC (P = 0.007) and correlated significantly with lymph node status (P = 0.002), although SDF-1 mRNA was rarely detected by CISH. Conclusions:, This study suggests that up-regulation of cytoplasmic expression of SDF-1/CXCR4 might be one of the molecular mechanisms facilitating lymph node metastasis of IMPC. [source] Neutrophil mobilization and clearance in the bone marrowIMMUNOLOGY, Issue 3 2008Rebecca C. Furze Summary The bone marrow is the site of neutrophil production, a process that is regulated by the cytokine granulocyte colony-stimulating factor (G-CSF). Mature neutrophils are continually released into the circulation, with an estimated 1011 neutrophils exiting the bone marrow daily under basal conditions. These leucocytes have a short half-life in the blood of ,6·5 hr, and are subsequently destroyed in the spleen, liver and indeed the bone marrow itself. Additionally, mature neutrophils are retained in the bone marrow by the stromal cell-derived factor (SDF-1,)/chemokine (C-X-C motif) receptor 4 (CXCR4) chemokine axis and form the bone marrow reserve. Following infection or inflammatory insult, neutrophil release from the bone marrow reserve is substantially elevated and this process is mediated by the co-ordinated actions of cytokines and chemokines. In this review we discuss the factors and molecular mechanisms regulating the neutrophil mobilization and consider the mechanisms and functional significance of neutrophil clearance via the bone marrow. [source] Restoration of Bone Mass and Strength in Glucocorticoid-Treated Mice by Systemic Transplantation of CXCR4 and Cbfa-1 Co-Expressing Mesenchymal Stem Cells,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2009Chun-Yang Lien Abstract Transplantation of gene-modified mesenchymal stem cells (MSCs) in animals for bone regeneration therapy has been evaluated extensively in recent years. However, increased endosteal bone formation by intravenous injection of MSCs ectopically expressing a foreign gene has not yet been shown. Aside from the clearance by lung and other tissues, the surface compositions of MSCs may not favor their bone marrow (BM) migration and engraftment. To overcome these hurdles, a gene encoding the chemokine receptor largely responsible for stromal-derived factor-1 (SDF-1)-mediated BM homing and engraftment of hematopoietic stem cells (HSCs), CXCR4, was transduced into mouse C3H10T1/2 cells by adenovirus infection. A dose-dependent increase of CXCR4 surface expression with a parallel enhanced chemotaxis toward SDF-1 in these cells after virus infection was clearly observed. Higher BM retention and homing of CXCR4-expressing MSCs were also found after they were transplanted by intramedullary and tail vein injections, respectively, into immunocompetent C3H/HeN mice. Interestingly, a full recovery of bone mass and a partial restoration of bone formation in glucocorticoid-induced osteoporotic mice were observed 4 wk after a single intravenous infusion of one million CXCR4-expressing C3H10T1/2 cells. In the meantime, complete recovery of bone stiffness and strength in these animals was consistently detected only after a systemic transplantation of CXCR4 and Cbfa-1 co-transduced MSCs. To our knowledge, this is the first report to show unequivocally the feasibility of ameliorating glucocorticoid-induced osteoporosis by systemic transplantation of genetically manipulated MSCs. [source] Secretion of SDF-1, by bone marrow-derived stromal cells enhances skin wound healing of C57BL/6 mice exposed to ionizing radiationJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6b 2010Yannick Landry Abstract Patients treated for cancer therapy using ionizing radiation (IR) have delayed tissue repair and regeneration. The mechanisms mediating these defects remain largely unknown at present, thus limiting the development of therapeutic approaches. Using a wound healing model, we here investigate the mechanisms by which IR exposure limits skin regeneration. Our data show that induction of the stromal cell-derived growth factor 1, (SDF-1,) is severely impaired in the wounded skin of irradiated, compared to non-irradiated, mice. Hence, we evaluated the potential of bone marrow-derived multipotent stromal cells (MSCs), which secrete high levels of SDF-1,, to improve skin regeneration in irradiated mice. Injection of MSCs into the wound margin led to remarkable enhancement of skin healing in mice exposed to IR. Injection of irradiated MSCs into the wound periphery of non-irradiated mice delayed wound closure, also suggesting an important role for the stromal microenvironment in skin repair. The beneficial actions of MSCs were mainly paracrine, as the cells did not differentiate into keratinocytes. Specific knockdown of SDF-1, expression led to drastically reduced efficiency of MSCs in improving wound closure, indicating that SDF-1, secretion by MSCs is largely responsible for their beneficial action. We also found that one mechanism by which SDF-1, enhances wound closure likely involves increased skin vascularization. Our findings collectively indicate that SDF-1, is an important deregulated cytokine in irradiated wounded skin, and that the decline in tissue regeneration potential following IR can be reversed, given adequate microenvironmental support [source] Evaluation of host genetic and viral factors as surrogate markers for HTLV-1-associated myelopathy/tropical spastic paraparesis in Peruvian HTLV-1-infected patientsJOURNAL OF MEDICAL VIROLOGY, Issue 3 2010Michael Talledo Abstract Human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a complication that affects up to 5% of HTLV-1-infected individuals. Several host genetic and viral factors have been associated with the risk of HAM/TSP. The aim of this study was to evaluate the performance of a prognostic model for HAM/TSP developed in Japan in a Peruvian population of 71 HAM/TSP patients and 94 asymptomatic carriers (ACs). This model included age, proviral load (PVL), the presence of HLA-A*02 and HLA-Cw*08 alleles, SDF-1 +801, and TNF -, ,863 polymorphisms, and viral subgroup. We describe frequencies for the four host genetic markers and demonstrate the presence of the HTLV-1 tax B subgroup in Peru. Using cross-validation, we show that the predictive ability of the prognostic model, as characterized by the area under the receiver-operating characteristic curve (AUC), does not differ from a model containing PVL only (both AUC,=,0.74). We found some suggestive evidence of a protective effect of the HLA-A*02 allele but failed to replicate the associations with the other three genetic markers and with viral subgroup. A logistic model containing PVL, age, gender, and HLA-A*02 provided the best predictive ability in the Peruvian cohort (AUC,=,0.79). J. Med. Virol. 82:460,466, 2010. © 2010 Wiley-Liss, Inc. [source] Stromal cell-derived factor-1 promotes migration of cells from the upper rhombic lip in cerebellar developmentJOURNAL OF NEUROSCIENCE RESEARCH, Issue 13 2010Tao Yu Abstract During cerebellar development, the chemokine stromal cell-derived factor-1, (SDF-1,) has been shown to play an important role in recruiting cells from the upper rhombic lip (URL) and external granule cell layer (EGL). However, its function in cerebellar development is still poorly understood. Our results have demonstrated that SDF-1 is necessary for EGL development, and URL cells stream to the SDF-1 source in vitro. Results of embryonic URL explant assays and transwell assays indicated that SDF-1 induces neural cell migration from the URL region in chemotactic and chemokinetic responses. The time-lapse results showed that the migration speed of granule cell progenitors out of the URL was accelerated by the addition of recombinant SDF-1,. Collectively, our study shows that SDF-1 increases the motility of URL cells in the absence of a gradient and promotes the migration of granule cell progenitors during cerebellar development. © 2010 Wiley-Liss, Inc. [source] Resin comparison and fast automated stepwise conventional synthesis of human SDF-1,JOURNAL OF PEPTIDE SCIENCE, Issue 12 2008Hirendra Patel Abstract Human SDF-1, contains 68 amino acids and is a member of the chemokine family of peptides. This long peptide was synthesized stepwise using classical conditions in 101 h. The reaction times were then reduced to deprotection times of 2 × 2 min and coupling times of 2 × 2.5 min, resulting in a total synthesis time of 22 h. The effect of different resins, resin substitutions and deprotection reagents on the crude peptide purities was compared. A small portion of crude peptide was purified using an RP-HPLC column and the mass of the final product was confirmed with MALDI-TOF mass spectrometry. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source] Differential response of platelets to chemokines: RANTES non-competitively inhibits stimulatory effect of SDF-1,JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2004B. Shenkman Summary.,Background:,Among the chemokines related to CXC and CC receptor groups and released from platelets, leukocytes and endothelial cells, SDF-1, TARC and MDC have been found to be platelet agonists. Platelets do not contain SDF-1,. In contrast, RANTES is constitutively present in platelet ,-granules and released upon platelet activation. Objectives:,To study a possible role of RANTES as a modulator of SDF-1, effect on platelets, in relation to CXCR4 and various CC receptors. Methods:,CXCR-4 (CXCL12) receptor expression and platelet activation were evaluated by flow cytometry, platelet deposition was studied by cone and plate(let) analyzer, and platelet aggregation by turbidometric aggregometry. Results:,Flow cytometry studies revealed similar expression of CXCR-4, the specific receptor of SDF-1, on intact, inactivated, and activated platelets. Preincubation of platelets with RANTES affected neither CXCR-4 expression, nor SDF-1, binding to the platelet membrane. In the presence of fibrinogen, SDF-1, activated gel-filtered platelets. RANTES did not activate platelets, but substantially (by 70%) inhibited SDF-1,-induced fibrinogen binding. Similarly, RANTES abrogated the promoting effect of SDF-1, on whole blood platelet adhesion to endothelial cell monolayer under venous flow conditions. In platelet-rich plasma, RANTES moderately inhibited SDF-1,-induced platelet aggregation, while it did not affect aggregation induced by thrombin-receptor activation peptide, adenosine diphosphate, or phorbol 12-myristate 13-acetate. A synergistic inhibitory effect of RANTES and prostaglandin E1 used at subthreshold concentrations, on SDF-1,-induced aggregation and SDF-1,-induced fibrinogen binding to platelets was observed, which may suggest involvement of RANTES in a cAMP-dependent signal transduction pathway. Conclusions:,RANTES non-competitively inhibits activation of platelets by SDF-1,, and thus may play a regulatory role in platelet response to inflammation. [source] Productive human immunodeficiency virus-1 infection of epithelial cell lines of salivary gland originMOLECULAR ORAL MICROBIOLOGY, Issue 2 2000Y. Han To ascertain whether epithelial cells of oral cavity origin may be infected with human immunodeficiency virus (HIV-1), a study to determine susceptibility to infection of salivary gland epithelial cell lines (HSY and HSG) was undertaken. Because of the potential for oral-genital transmission, an endometrial cell line, HEC-1, was also studied. Epithelial cell monolayers were infected with cell-free HTLVIIIB or a primary HIV-1 isolate. Several lines of evidence indicated that inoculation of these cell lines with HIV-1 led to productive infection: 1) p24 antigen was present in supernatants, with levels peaking on days 3,4; 2) provirus was found in cells by polymerase chain reaction; 3) virions present in supernatants were infectious as confirmed by coculture with the T-lympho- blastoid line CEM-NKr. Following a period of virus production, HIV-1 entered a latency phase over 10 weeks. All epithelial cell lines were positive for galactosylceramide (GalC) and CXCR4. HSY was weakly positive for surface CD4, and also expressed mRNA for CD4 and CCR5, as did HEC-1. Blocking studies indicated that anti-GalC, but not anti-CD4, significantly reduced productive infection, and that regulated on activation normal T cell expressed and secreted (RANTES) but not stromal cell,derived factor (SDF-1) could partially block infection of the M-tropic primary isolate. These results suggest that epithelial cells in the oral cavity and the genital tract might be targets of HIV-1 and potentially serve as a mediator of systemic infection. [source] Backbone dynamics of SDF-1, determined by NMR: Interpretation in the presence of monomer,dimer equilibriumPROTEIN SCIENCE, Issue 11 2006Olga K. Baryshnikova Abstract SDF-1, is a member of the chemokine family implicated in various reactions in the immune system. The interaction of SDF-1, with its receptor, CXCR4, is responsible for metastasis of a variety of cancers. SDF-1, is also known to play a role in HIV-1 pathogenesis. The structures of SDF-1, determined by NMR spectroscopy have been shown to be monomeric while X-ray structures are dimeric. Biochemical data and in vivo studies suggest that dimerization is likely to be important for the function of chemokines. We report here the dynamics of SDF-1, determined through measurement of main chain 15N NMR relaxation data. The data were obtained at several concentrations of SDF-1, and used to determine a dimerization constant of ,5 mM for a monomer,dimer equilibrium. The dimerization constant was subsequently used to extrapolate values for the relaxation data corresponding to monomeric SDF-1,. The experimental relaxation data and the extrapolated data for monomeric SDF-1, were analyzed using the model free approach. The model free analysis indicated that SDF-1, is rigid on the nano- to picosecond timescale with flexible termini. Several residues involved in the dimer interface display slow micro- to millisecond timescale motions attributable to chemical exchange such as monomer,dimer equilibrium. NMR relaxation measurements are shown to be applicable for studying oligomerization processes such as the dimerization of SDF-1,. [source] Hypoxic preconditioning protects rat hearts against ischaemia,reperfusion injury: role of erythropoietin on progenitor cell mobilizationTHE JOURNAL OF PHYSIOLOGY, Issue 23 2008Jih-Shyong Lin Preconditioning, such as by brief hypoxic exposure, has been shown to protect hearts against severe ischaemia. Here we hypothesized that hypoxic preconditioning (HPC) protects injured hearts by mobilizing the circulating progenitor cells. Ischaemia,reperfusion (IR) injury was induced by left coronary ligation and release in rats kept in room air or preconditioned with 10% oxygen for 6 weeks. To study the role of erythropoietin (EPO), another HPC + IR group was given an EPO receptor (EPOR) antibody via a subcutaneous mini-osmotic pump 3 weeks before IR induction. HPC alone gradually increased haematocrit, cardiac and plasma EPO, and cardiac vascular endothelial growth factor (VEGF) only in the first two weeks. HPC improved heart contractility, reduced ischaemic injury, and maintained EPO and EPOR levels in the infarct tissues of IR hearts, but had no significant effect on VEGF. Interestingly, the number of CD34+CXCR4+ cells in the peripheral blood and their expression in HPC-treated hearts was higher than in control. Preconditioning up-regulated cardiac expression of stromal derived factor-1 (SDF-1) and prevented its IR-induced reduction. The EPOR antibody abolished HPC-mediated functional recovery, and reduced SDF-1, CXCR4 and CD34 expression in IR hearts, as well as the number of CD34+CXCR4+ cells in blood. The specificity of neutralizing antibody was confirmed in an H9c2 culture system. In conclusion, exposure of rats to moderate hypoxia leads to an increase in progenitor cells in the heart and circulation. This effect is dependent on EPO, which induces cell homing by increased SDF-1/CXCR4 and reduces the heart susceptibly to IR injury. [source] ERAP75 functions as a coactivator to enhance estrogen receptor , transactivation in prostate stromal cells,THE PROSTATE, Issue 12 2008Ming Chen Abstract BACKGROUND Estrogen receptor , (ER,) has been reported to be expressed and function in the prostate stromal cells, and numerous evidences indicated that the stromal ER, signal pathway plays critical roles in prostate development and cancer. ER, requires distinct coregulators for efficient transcriptional regulation. The goal of this study is to examine physical and functional interaction between ER, and ERAP75 in the context of prostate stromal cells. METHOD Yeast two-hybrid assays were used to screen novel ER, interaction proteins. The interaction between ER, and ERAP75 was confirmed by mammalian two-hybrid, GST pull-down, and co-immunoprecipitation methods. The interaction motif was examined by site-directed mutagenesis. The effect of ERAP75 on ER, transactivation and the expression of ER, target genes were determined by luciferase assay and real-time PCR, respectively. RESULT ER, can interact with the C terminus of ERAP75 via its ligand binding domain both in vivo and in vitro. The conserved LXXLL motif within the C terminus of ERAP75 is required for the interaction between ER, and ERAP75. ERAP75 can enhance ER, transactivation in a dose-dependent manner and up-regulate the expression of the endogenous ER, target gene, stromal-derived factor-1 (SDF-1), in the prostate stromal cells. CONCLUSION ERAP75 functions as a novel coactivator that can modulate ER, function in the prostate stromal cells. The understanding of the mechanism of ER, transactivation in prostate stromal cells could possibly help in the development of new strategies to control or treat prostate cancer by targeting its transactivation protein complex. Prostate 68:1273,1282, 2008. © 2008 Wiley-Liss, Inc. [source] Endothelial progenitor cell transplantation improves long-term stroke outcome in miceANNALS OF NEUROLOGY, Issue 4 2010Yongfeng Fan PhD Objective Endothelial progenitor cells (EPCs) play an important role in tissue repairing and regeneration in ischemic organs, including the brain. However, the cause of EPC migration and the function of EPCs after ischemia are unclear. In this study, we demonstrated the effects of EPCs on ischemic brain injury in a mouse model of transient middle cerebral artery occlusion (tMCAO). Methods Circulating human EPCs were characterized with immunofluorescent staining and flow cytometry. EPCs (1 × 106) were injected into nude mice after 1 hour of tMCAO. Histological analysis and behavioral tests were performed from day 0 to 28 days after tMCAO. Results EPCs were detected in ischemic brain regions 24 hours after tMCAO. EPC transplantation significantly reduced ischemic infarct volume at 3 days after tMCAO compared with control animals (p < 0.05). CXCR4 was expressed in the majority of EPCs, and stromal-derived factor-1 (SDF-1) induced EPC migration, which was blocked by pretreated EPCs with AMD3100 in vitro. SDF-1 was upregulated in ischemic brain. Compared with control animals, injecting AMD3100-pretreated EPCs resulted in a larger infarct volume 3 days after tMCAO, suggesting that SDF-1,mediated signaling was involved in EPC-mediated neuroprotection. In addition, EPC transplantation reduced mouse cortex atrophy 4 weeks after tMCAO and improved neurobehavioral outcomes (p < 0.05). EPC injection potently increased angiogenesis in the peri-infarction area (p < 0.05). Interpretation We conclude that systemic delivery of EPCs protects the brain against ischemic injury, promotes neurovascular repair, and improves long-term neurobehavioral outcomes. Our data suggest that SDF-1,mediated signaling plays a critical role in EPC-mediated neuroprotection. ANN NEUROL 2010;67:488,497 [source] Inhibition of fibroblast activation protein and dipeptidylpeptidase 4 increases cartilage invasion by rheumatoid arthritis synovial fibroblastsARTHRITIS & RHEUMATISM, Issue 5 2010Caroline Ospelt Objective Since fibroblasts in the synovium of patients with rheumatoid arthritis (RA) express the serine proteases fibroblast activation protein (FAP) and dipeptidylpeptidase 4 (DPP-4)/CD26, we undertook the current study to determine the functional role of both enzymes in the invasion of RA synovial fibroblasts (RASFs) into articular cartilage. Methods Expression of FAP and DPP-4/CD26 by RASFs was analyzed using fluorescence-activated cell sorting and immunocytochemistry. Serine protease activity was measured by cleavage of fluorogenic substrates and inhibited upon treatment with L-glutamyl L-boroproline. The induction and expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in RASFs were detected using real-time polymerase chain reaction. Densitometric measurements of MMPs using immunoblotting confirmed our findings on the messenger RNA level. Stromal cell,derived factor 1 (SDF-1 [CXCL12]), MMP-1, and MMP-3 protein levels were measured using enzyme-linked immunosorbent assay. The impact of FAP and DPP-4/CD26 inhibition on the invasiveness of RASFs was analyzed in the SCID mouse coimplantation model of RA using immunohistochemistry. Results Inhibition of serine protease activity of FAP and DPP-4/CD26 in vitro led to increased levels of SDF-1 in concert with MMP-1 and MMP-3, which are downstream effectors of SDF-1 signaling. Using the SCID mouse coimplantation model, inhibition of enzymatic activity in vivo significantly promoted invasion of xenotransplanted RASFs into cotransplanted human cartilage. Zones of cartilage resorption were infiltrated by FAP-expressing RASFs and marked by a significantly higher accumulation of MMP-1 and MMP-3, when compared with controls. Conclusion Our results indicate a central role for the serine protease activity of FAP and DPP-4/CD26 in protecting articular cartilage against invasion by synovial fibroblasts in RA. [source] Stromal cell,derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse modelARTHRITIS & RHEUMATISM, Issue 3 2009Toshiyuki Kitaori Objective Stromal cell,derived factor 1 (SDF-1; CXCL12/pre,B cell growth-stimulating factor) is a dominant chemokine in bone marrow and is known to be involved in inflammatory diseases, including rheumatoid arthritis. However, its role in bone repair remains unknown. The purpose of this study was to investigate the role of SDF-1 and its receptor, CXCR4, in bone healing. Methods The expression of SDF-1 during the repair of a murine structural femoral bone graft was examined by real-time polymerase chain reaction and immunohistochemical analysis. The bone graft model was treated with anti,SDF-1 neutralizing antibody or TF14016, an antagonist for CXCR4, and evaluated by histomorphometry. The functional effect of SDF-1 on primary mesenchymal stem cells was determined by in vitro and in vivo migration assays. New bone formation in an exchanging-graft model was compared with that in the autograft models, using mice partially lacking SDF-1 (SDF-1+/,) or CXCR4 (CXCR4+/,). Results The expression of SDF1 messenger RNA was increased during the healing of live bone grafts but was not increased in dead grafts. High expression of SDF-1 protein was observed in the periosteum of the live graft. New bone formation was inhibited by the administration of anti,SDF-1 antibody or TF14016. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1 participate in endochondral bone repair. Bone formation was decreased in SDF-1+/, and CXCR4+/, mice and was restored by the graft bones from CXCR4+/, mice transplanted into the SDF-1+/, femur, but not vice versa. Conclusion SDF-1 is induced in the periosteum of injured bone and promotes endochondral bone repair by recruiting mesenchymal stem cells to the site of injury. [source] Differential expression of stromal cell,derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: Pathogenetic implicationsARTHRITIS & RHEUMATISM, Issue 9 2006Paola Cipriani Objective Systemic sclerosis (SSc) is characterized by early endothelial damage evolving to vascular desertification. Stromal cell,derived factor 1 (SDF-1) and its receptor CXCR4 regulate specific steps in new vessel formation. We undertook this study to determine whether an alteration of the SDF-1/CXCR4 axis might be involved in the pathogenetic mechanisms following ischemic damage during SSc. Methods We enrolled 36 SSc patients and 15 controls. Skin biopsy samples were obtained from each subject, and the expression of SDF-1 and CXCR4 was assessed by immunohistochemistry, reverse transcription,polymerase chain reaction (RT-PCR), and Western blot analyses. Furthermore, isolated microvascular endothelial cells (MVECs) from 4 patients with diffuse cutaneous SSc (dcSSc) and 3 controls were analyzed for SDF-1 and CXCR4 by confocal laser scanning microscopy, RT-PCR, and Western blotting. Results SDF-1 and CXCR4 were up-regulated in the skin of patients with early (edematous) SSc, both in the diffuse and limited cutaneous forms, and progressively decreased, with the lowest expression in the latest phases of both SSc subsets. MVECs from patients with dcSSc expressed significantly higher amounts of both isoforms of SDF-1 in the early stage of disease, with a progressive reduction of SDF-1 and CXCR4 in later stages. On the surface of cultured MVECs from patients with dcSSc, SDF-1 and CXCR4 colocalized in polarized areas, suggesting that they are activated in vivo and that they are under strict genetic control to retain capping function. Conclusion Due to its transient expression, SDF-1 could be considered a future therapeutic target to induce new vessel formation in SSc. [source] Hypoxia-induced production of stromal cell,derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblastsARTHRITIS & RHEUMATISM, Issue 10 2002Carol Hitchon Objective Stromal cell,derived factor 1 (SDF-1; or, CXCL12) is a potent chemotactic and angiogenic factor that has been proposed to play a role in the recruitment of lymphocytes into rheumatoid arthritis (RA) synovium. We tested the hypothesis that synovial SDF-1 expression is regulated by cytokine and hypoxic stimulation, the latter being mediated by hypoxia-inducible factor 1, (HIF-1,). These factors regulate the expression of vascular endothelial growth factor (VEGF), itself an important angiogenic mediator. Methods RA and osteoarthritic synovial fibroblasts and whole tissue explants were cultured under normoxic or hypoxic (1% O2) conditions for up to 72 hours in the presence or absence of interleukin-1, (IL-1,), tumor necrosis factor (TNF), or transforming growth factor , (TGF,). Expression of HIF-1,, VEGF, and SDF-1 was detected in synovial tissue and cells by immunohistochemistry and Western blotting. VEGF and SDF-1 expression by cultured synovial fibroblasts was evaluated by reverse transcription,polymerase chain reaction and enzyme-linked immunosorbent assay. Results Immunohistochemistry revealed the presence of HIF-1,, VEGF, and SDF-1 in RA synovium. Patchy expression of HIF-1, was detected primarily in the synovial lining and sublining areas; expression in synovial fibroblasts and in the lining cells of whole synovial tissue explants was markedly augmented by hypoxic culture conditions. Hypoxia enhanced the expression of VEGF and SDF-1 messenger RNA in synovial fibroblasts. The production of VEGF and SDF-1 protein by synovial fibroblasts was augmented by 50% and 132%, respectively, after 24 hours of hypoxia. VEGF production was potently induced by TGF,, and to a lesser extent by IL-1, and TNF, and was further augmented by hypoxia. In contrast, none of the tested cytokines induced SDF-1 production. Conclusion As with VEGF, SDF-1 expression is induced by hypoxia; however, cytokines induce VEGF but not SDF-1. Hypoxic conditions in RA synovium, which are likely to be transient and episodic, may contribute to the persistence of synovitis by inducing VEGF and SDF-1. [source] Polyurethane Scaffolds Seeded With Genetically Engineered Skeletal Myoblasts: A Promising Tool to Regenerate Myocardial FunctionARTIFICIAL ORGANS, Issue 2 2010Britta Blumenthal Abstract In animal models, intramyocardial injection of primary skeletal myoblasts is supposed to promote tissue regeneration and to improve cardiac function after myocardial infarction. The usage of genetically engineered myoblasts overexpressing the paracrine factors involved in tissue repair is believed to enhance these effects. However, cell therapy via injection is always accompanied by a high death rate of the injected cells. Here, we describe the construction of a growth factor-producing myoblast-seeded scaffold to overcome this limitation. Skeletal myoblasts were isolated and expanded from newborn Lewis rats. Cells were seeded on polyurethane (PU) scaffolds (Artelon) and transfected with DNA of VEGF-A, HGF, SDF-1, or Akt1 using the lipid-based Metafectene Pro method. Overexpression was verified by ELISA, RT-PCR (VEGF-A, HGF, and SDF-1) and Western blot analysis (Akt1). The seeded scaffolds were transplanted onto damaged myocardium of Lewis rats 2 weeks after myocardial infarction. Six weeks later, their therapeutic potential in vivo was analyzed by measurement of infarction size and capillary density. Primary rat skeletal myoblasts seeded on PU scaffolds were efficiently transfected, achieving transfection rates of 20%. In vitro, we noted a significant increase in expression of VEGF-A, HGF, SDF-1, and Akt1 after transfection. In vivo, transplantation of growth factor-producing myoblast-seeded scaffolds resulted in enhanced angiogenesis (VEGF-A, HGF, and Akt1) or a reduced infarction zone (SDF-1 and Akt1) in the ischemically damaged myocardium. In summary, we constructed a growth factor-producing myoblast-seeded scaffold which combines the beneficial potential of stem cell transplantation with the promising effects of gene-therapeutic approaches. Because this matrix also allows us to circumvent previous cell application drawbacks, it may represent a promising tool for tissue regeneration and the re-establishment of cardiac function after myocardial infarction. [source] Galectin-1 supports the survival of CD45RA(,) primary myeloma cells in vitroBRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2008Saeid Abroun Summary The survival and proliferation of human myeloma cells are considered to be heavily dependent on the microenvironment of bone marrow (BM). This study confirmed that galectin-1 (Gal-1) and SDF-1, were produced by bone marrow mononuclear cells of myeloma patients. The addition of Gal-1 and SDF-1, to a serum-free synthetic medium, maintained the viability of primary myeloma cells for 2 weeks similar to that before culture. While Gal-1 reduced the viable cell number in CD45RA(+) B cell lines, it maintained the viability of CD45(,) U266 and CD45RA(,)RO(+) ILKM3 myeloma cell lines in the synthetic medium. This was confirmed with the transfection of the PTPRC (CD45) RA, -RB, or -RO gene into CD45(,) U266 cells. The combination of Gal-1 and SDF-1, significantly induced phosphorylation of Akt and IkB, while the phosphorylation of ERK1/2 was significantly reduced in CD45RA(+) U266 and Raji cells but not CD45(,) or CD45RA(,) U266 cells. Furthermore, we confirmed that Gal-1 bound to CD45RA in CD45RA(+) Raji cells, and also physically interacted with ,1-integrin by immunoprecipitation followed by Western blotting and confocal microscopy. The results suggest that Gal-1 has two different actions depending on its binding partner, and supports the survival of CD45RA(,) myeloma cells. [source] Stromal-derived factor 1 and matrix metalloproteinase 9 levels in bone marrow and peripheral blood of patients mobilized by granulocyte colony-stimulating factor and chemotherapy.BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2003Relationship with mobilizing capacity of haematopoietic progenitor cells Summary. The roles of the chemokine stromal-derived factor 1 (SDF-1) and the matrix metalloproteinase 9 (MMP-9) in haematopoietic progenitor cell (HPC) mobilization are still unclear, particularly when patients are mobilized by granulocyte colony-stimulating factor (G-CSF) plus chemotherapy. We determined bone marrow (BM) and peripheral blood (PB) plasma levels of SDF-1, together with CXC-chemokine receptor 4 (CXCR-4) expression on CD34+ cells, and interleukin 8 (IL-8) and MMP-9 in 55 patients mobilized for autologous PB transplantation compared with 10 normal BM and PB samples. Plasma samples were tested at steady state (SS-) and after mobilization by cyclophosphamide and G-CSF administration (M-). SDF-1, CXCR-4, IL-8 and MMP-9 levels were significantly lower in SS- and M-PB than in SS-BM. Differences in SDF-1 levels between SS-PB and SS-BM were also observed after mobilization. We showed for the first time a clear relationship between the levels of circulating HPC, both at steady state and after mobilization, and those of secreted MMP-9 but not of SDF-1 or IL-8. However, a negative correlation was observed between mobilizing capacity and CXCR-4 expression on CD34+ cells. These findings suggest that G-CSF-induced mobilization of HPC from BM involves MMP-9, without reversing the positive gradient of SDF-1 between BM and PB. [source] Simultaneous signalling through c-mpl, c-kit and CXCR4 enhances the proliferation and differentiation of human megakaryocyte progenitors: possible roles of the PI3-K, PKC and MAPK pathwaysBRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2001Hitoshi Minamiguchi We assessed the effect of signalling through CXCR4 on the proliferation and differentiation of human megakaryocytic progenitor cells (CFU-Meg) in the presence or absence of stem cell factor (SCF) and/or thrombopoietin (TPO), using peripheral blood-derived CD34+IL-6R, cells as a target. TPO alone induced a significant number of CFU-Meg colonies. Although stromal cell-derived factor-1 (SDF-1) or SCF alone did not support CFU-Meg colony formation, these factors had a synergistic effect on CFU-Meg colony formation in the presence of TPO. The combination of SDF-1, SCF and TPO induced twice as many CFU-Meg colonies as TPO alone. To investigate the mechanism of this synergistic action, we examined the effects of various protein kinase inhibitors on CFU-Meg colony formation. LY294002 and GF109203X (inhibitors of PI3-K and PKC respectively) completely or partially inhibited this synergistic action. In contrast, a MEK inhibitor (PD98059) did not inhibit CFU-Meg colony formation. It significantly increased the higher ploidy classes (16N to 64N) of megakaryocytes supported by TPO, TPO + SCF, TPO + SDF-1, and TPO + SCF + SDF-1, whereas it abolished the effect of SDF-1 on the increase of higher ploidy classes of megakaryocytes supported by TPO. These results suggest that MAPK may negatively or positively regulate the nuclear maturation of megakaryocytes, known as endomitosis. In the presence of PD98059, proplatelet formation (PPF) was significantly augmented, suggesting that the MAPK pathway may also inhibit the initiation of PPF. In conclusion, simultaneous activation of three signals through c-mpl, c-kit and CXCR4 can induce the in vitro proliferation and differentiation of CFU-Meg, and SDF-1 is a potentiator of human megakaryocytopoiesis. [source] Stroma-derived factor 1, induces a selective inhibition of human erythroid development via the functional upregulation of Fas/CD95 ligandBRITISH JOURNAL OF HAEMATOLOGY, Issue 2 2000Davide Gibellini CXC chemokine receptor 4 (CXCR4), the high-affinity receptor for stroma-derived factor 1, (SDF-1,), shows distinct patterns of expression in human CD34+ haematopoietic progenitor cells induced to differentiate in vitro along the granulocytic and erythroid lineages. In serum-free liquid cultures supplemented with stem cell factor (SCF), interleukin 3 (IL-3) and granulocyte colony-stimulating factor, the expression of surface CXCR4 progressively increased in cells differentiating along the granulocytic lineage. The addition in culture of 200 ng/ml of SDF-1,, a concentration which maximally activated intracellular Ca2+ flux, only modestly affected the expression levels of CD15 and CD11b granulocytic antigens, as well as the total number of viable cells. On the other hand, in liquid cultures supplemented with SCF, IL-3 and erythropoietin, SDF-1, induced the downregulation of glycophorin A erythroid antigen, accompanied by a progressive decline in the number of viable erythroblasts. Moreover, in semisolid assays, SDF-1, significantly reduced the number of plurifocal erythroid colonies (erythroid blast-forming units; BFU-E), whereas it did not affect granulocyte,macrophage colony-forming units (CFU-GM). We also demonstrated that the inhibitory effect of SDF-1, on glycophorin A+ erythroid cell development was mediated by the functional upregulation of CD95L in erythroid cultures. These data indicate that SDF-1, plays a role as a negative regulator of erythropoiesis. [source] Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemiaBRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2000Robert Möhle The chemokine stromal cell-derived factor-1 (SDF-1) that is released by bone marrow (BM) stromal cells and contributes to stem cell homing may also play a role in the trafficking of leukaemic cells. We analysed SDF-1-induced intracellular calcium fluxes in leukaemic blasts from the peripheral blood of patients with newly diagnosed acute myeloid leukaemia (AML) and lymphoblastic leukaemia (B-lineage ALL), determined the effect of BM stromal cell-conditioned medium on in vitro transendothelial migration (TM) and measured expression of the SDF-1 receptor, CXCR4, by flow cytometry. AML FAB M1/2 blasts did not show calcium fluxes and TM was not stimulated. In myelomonocytic AML (M4/5), however, SDF-1 induced significant calcium fluxes and TM was increased twofold by the conditioned medium. M3 and M4 blasts with eosinophilia (M4eo) showed intermediate activity and M6 blasts showed no functional activity. In ALL, strong calcium fluxes and increased TM (2.5-fold) were observed. Accordingly, expression of CXCR4 was low in undifferentiated (M0) AML, myeloid (M1/2) AML and erythroid (M6) AML, but high [mean fluorescence (MF) > 50] in promyelocytic (M3) AML, myelomonocytic (M4/5) AML and B-lineage ALL. We conclude that, in AML, SDF-1 is preferentially active in myelomonocytic blasts as a result of differentiation-related expression of CXCR4. Functional activity of SDF-1 and high expression of CXCR4 in B-lineage ALL is in accordance with the previously described activity of SDF-1 in early B cells. SDF-1 may contribute to leukaemic marrow infiltration, as suggested by increased CXCR4 expression and migratory response in BM-derived blasts compared with circulating cells. [source] Up-regulation of pro-inflammatory genes as adaptation to hypoxia in MCF-7 cells and in human mammary invasive carcinoma microenvironmentCANCER SCIENCE, Issue 4 2010Marco Tafani The role of tumor cells in synthesizing pro-inflammatory molecules is still controversial. Here we report that hypoxic treatment of the MCF-7 human mammary adenocarcinoma cell line induced activation of hypoxia-inducible factor 1, (HIF-1,) and nuclear factor-kappa B (NF-,B). Importantly, hypoxia regulated expression of alarmin receptors such as the receptor for advanced glycation end products (RAGE) and the purinoreceptor (P2X7R), and up-regulated inflammatory response (IR) genes such as the inducible enzymes nitric oxide synthase (NOS2), cycloxygenase (COX2), and the acute-phase protein pentraxin-3 (PTX3). Hypoxia also stimulated chemokine (C-X-C motif) receptor 4 (CXCR4) mRNA synthesis. In fact, the CXCR4 ligand stromal-derived factor-1, (SDF-1,) increased invasion and migration of hypoxic MCF-7 cells. Inhibition of HIF-1, by chetomin and NF-,B by parthenolide reduced mRNA and protein expression of the studied molecules and prevented invasion of hypoxic MCF-7 cells. Moreover, solid invasive mammary tumor microenvironment was analyzed after laser-capture microdissection (LCMD) comparing tumor versus host normal tissue. Nuclear translocation of HIF-1, and NF-,B and up-regulation of IR, CXCR4, estrogen receptor , (ER,), and epithelial growth factor receptor (EGFR) was observed in tumor but not in host normal tissue in the absence of a local inflammatory leukocyte infiltrate. We conclude that under hypoxic conditions MCF-7 cells acquire a pro-inflammatory phenotype, and that solid human mammary carcinoma evidenced a similar activation of HIF-1,, NF-,B, and IR genes in malignant tumor cells as compared to the normal host tissues. We suggest a role for IR activation in the malignant progression of transformed cells. (Cancer Sci 2010; 101: 1014,1023) [source] |